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These notes are largely based on [2].

1 Definition of a Markov chain

For this course we will always take I to be a countable set and all our random variables will be

defined on the same probability space (Ω,F ,P).

Definition 1.1. A stochastic process (Xn)n≥0 with values in I is called a Markov chain if for

all n ≥ 0 and for all x0, . . . , xn, xn+1 ∈ I we have

P(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1 | Xn = xn) .

If P(Xn+1 = y | Xn = x) for all x, y ∈ I is independent of n, then we call X a (time)-homogeneous

Markov chain. Otherwise, it is called time-inhomogeneous.

In this course we will focus on time-homogeneous Markov chains. In this case, we will work with

the transition matrix P which is defined via

P (x, y) = P(X1 = y | X0 = x) for all x, y ∈ I.

The matrix P is called a stochastic matrix, because it satisfies∑
y∈I

P (x, y) = 1.

Remark 1.2. We note that we will not always work with Markov chains indexed by N, but they

could sometimes have a finite time index set.

Definition 1.3. We say that the stochastic process (Xn)n≥0 with values in I is Markov(λ, P ) if it

has initial distribution λ and transition matrix P , i.e. if for all n ≥ 0 and for all x0, . . . , xn, xn+1 ∈ I
we have

(i) P(X0 = x0) = λx0 and

(ii) P(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P (xn, xn+1).

We usually represent a Markov chain by its diagram corresponding to the allowed transitions. More

precisely, we place a directed edge from state x to state y if there is a positive probability of jumping

from x to y and on top of the edge we write the probability of this transition.

Example 1.4. Let P =

(
1− α α

β 1− β

)
. This is a transition matrix on 2 states that we call 1

and 2. Let P =

1/2 1/2 0

1/3 1/3 1/3

1 0 0

. This is a transition matrix on 3 states that we call 1, 2 and 3.

We represent them as in the picture below.
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2 Basic properties

The following theorem will be very useful in this course and its proof follows from the definitions

above.

Theorem 2.1. The process X is Markov(λ, P ) if and only if for all n ≥ 0 and all x0, . . . , xn ∈ I
we have

P(X0 = x0, . . . , Xn = xn) = λx0px0x1 · · · pxn−1xn . (2.1)

Proof. Suppose first that X is Markov(λ, P ) and let x0, . . . , xn ∈ I. Then we have

P(X0 = x0, . . . , Xn = xn) = P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1)P(X0 = x0, . . . , Xn−1 = xn−1)

= P(Xn = xn | Xn−1 = xn−1)P(X0 = x0, . . . , Xn−1 = xn−1)

= pxn−1xnP(X0 = x0, . . . , Xn−1 = xn−1) .

Iterating, we obtain

P(X0 = x0, . . . , Xn = xn) = P(X0 = x0) px0x1 · · · pxn−1xn = λx0px0x1 · · · pxn−1xn ,

which completes the proof of this direction.

The other direction, i.e. assuming thatX satisfies (2.1) it is immediate to prove thatX is Markov(λ, P ),

since taking n = 0 gives

P(X0 = x0) = λx0

and for the Markov property we have

P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0) =
P(Xn = xn, . . . , X0 = x0)

P(Xn−1 = xn−1, . . . , X0 = x0)

=
λx0px0x1 . . . pxn−1xn

λx0px0x1 . . . pxn−2xn−1

= pxn−1xn

which proves (ii) of the definition.
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Definition 2.2. Let i ∈ I. The δi-mass at i is defined to be

δij = 1(i = j) =

{
1 if i = j

0 otherwise
.

We recall from Probability 1A the notion of independence for discrete random variables.

Definition 2.3. Let X1, . . . , Xn be n discrete random variables taking values in I. They are called

independent if for all x1, . . . , xn ∈ I we have

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

P(Xi = xi) .

Suppose now that (Xn)n∈N is a sequence of random variables with values in I. They are called

independent if for all k ≥ 0 and all i1, . . . , ik distinct and all x1, . . . , xk we have

P(Xi1 = x1, . . . , Xik = xk) =

k∏
`=1

P(Xi` = x`) .

Suppose that X = (Xn)n≥0 and Y = (Yn)n≥0 are two sequences of random variables taking values

in I. Then X and Y are called independent, if for all k,m ∈ N, all i1, . . . , ik ∈ N and j1, . . . , jm ∈ N
and x1, . . . , xk, y1, . . . , ym ∈ I we have

P(Xi1 = x1, . . . , Xik = xk, Yj1 = y1, . . . , Yjm = ym)

= P(Xi1 = x1, . . . , Xik = xk)P(Yj1 = y1, . . . , Yjm = ym) .

The next theorem formalises the statement that for a Markov chain the past and the future are

independent given the present.

Theorem 2.4 ((Simple) Markov property). Suppose that X is Markov(λ, P ) with values in I

and let m ∈ N. Then conditional on Xm = i the process (Xm+n)n≥0 is Markov(δi, P ) and it is

independent of X0, . . . , Xm.

Proof. We first show that conditional on Xm = i the process (Xm+n)n≥0 is Markov(δi, P ). We

first write

P(Xm+n = xm+n, . . . , Xm = xm | Xm = i) = 1(xm = i) · P(Xm+n = xm+n, . . . , Xm = xm)

P(Xm = i)
. (2.2)
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By the law of total probability we get

P(Xm+n = xm+n, . . . , Xm = xm)

=
∑

x0,...,xm−1

P(X0 = x0, . . . , Xm−1 = xm−1, Xm = xm, . . . , Xm+n = xm+n)

=
∑

x0,...,xm−1

λx0px0x1 · · · pxm−1xmpxmxm+1 · · · pxm+n−1xm+n

= pxmxm+1 · · · pxm+n−1xm+n

∑
x0,...,xm−1

λx0px0x1 · · · pxm−1xm

= pxmxm+1 · · · pxm+n−1xm+nP(Xm = xm) ,

where we used Theorem 2.1 in the second and final equalities. Plugging this into (2.2) we obtain

P(Xm+n = xm+n, . . . , Xm = xm | Xm = i) = δixmpxmxm+1 · · · pxm+n−1xm+n ,

which again by Theorem 2.1 proves that conditional on Xm = i, the process (Xm+n)n≥0 is

Markov(δi, P ).

We now prove that conditional on Xm = i, the process (Xm+n)n≥0 is independent of X0, . . . , Xm.

Let k ≥ 0 and x1, . . . , xm−1, xm+1, . . . , xk+m ∈ I and let m ≤ i1 ≤ . . . ≤ ik. We will prove that

P(Xi1 = xm+1, . . . , Xik = xk+m, Xm = xm, . . . , X0 = x0 | Xm = i)

= P(Xi1 = xm+1, . . . , Xik = xk+m | Xm = i)P(Xm = xm, . . . , X0 = x0 | Xm = i) .

First of all the probability on the left hand side above is nonzero when xm = i. So with xm = i we

now have

P(Xi1 = xm+1, . . . , Xik = xk+m, Xm = xm, . . . , X0 = x0 | Xm = i)

=
P(Xi1 = xm+1, . . . , Xik = xk+m, Xm = xm, . . . , X0 = x0)

P(Xm = i)

=
λx0px0x1 · · · pxm−1xm

P(Xm = i)
· P(Xi1 = xm+1, . . . , Xik = xk+m | Xm = i)

= P(Xi1 = xm+1, . . . , Xik = xk+m | Xm = i)P(Xm = xm, . . . , X0 = x0 | Xm = i) ,

where the second and last equality follow from Theorem 2.1 again. This completes the proof.

3 Powers of the transition matrix

Suppose that X is Markov(λ, P ) taking values in I. We think of the rows and columns of P as

indexed by 1, . . . , |I| (if I is infinite, we index P by N).

We want to understand the probability that after running the Markov chain for n steps it is in a
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given state x ∈ I. Let’s calculate this

P(Xn = x) =
∑

x0,...,xn−1∈I
P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

=
∑

x0,...,xn−1∈I
λx0px0x1 · · · pxn−1x = (λPn)x,

where we think of the initial distribution λ as a row vector and Pn denotes the n-th power of the

transition matrix P . By convention we always take P 0 = I.

Let m,n ∈ N. We want to calculate P(Xn+m = y | Xm = x). Given Xm = x we know from

Theorem 2.4 that (Xm+n)n≥0 is Markov(δx, P ). Hence we have

P(Xn+m = y | Xm = x) = (δxP
n)y = (Pn)xy.

It will become handy to use the following notation: for an event A we will write Pi(A) for the

probability P(A | X0 = i). For i, j ∈ I we will write pij(n) for the (i, j) element of the n-th power

of P , i.e. pij(n) = (Pn)ij .

We have thus proved the following theorem.

Theorem 3.1. Suppose that X is Markov(λ, P ). Then for all n,m ≥ 0 and all x, y we have

P(Xn = x) = (λPn)x

P(Xn+m = y | Xm = x) = pxy(n).

We now present some examples where we calculate the n-th power of the transition matrix.

Example 3.2. Let P =

(
1− α α

β 1− β

)
for α, β ∈ [0, 1]. Then exploiting Pn+1 = Pn · P we get

p11(n+ 1) = (1− α)p11(n) + βp12(n).

Also p11(n) + p12(n) = 1, which substituting above gives

p11(n+ 1) = β + (1− α− β)p11(n).

Since p11(0) = 1 we can solve this recursion and get the unique solution

p11(n) =

{
α

α+β + α
α+β · (1− α− β)n if α+ β > 0

1 if α+ β = 0
.

General method for finding the powers of a transition matrix. Let P be a k×k stochastic

matrix. We want to calculate p11(n). In order to do so we first find the eigenvalues of P , λ1, . . . , λk.
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If all the eigenvalues are distinct, then P is diagonalisable, i.e. we can write

P = U

λ1 0 · · · 0
...

...
. . .

...

0 · · · 0 λk

U−1,

where U is the change of basis matrix and is invertible. Thus taking the n-th power we obtain

Pn = U

λ
n
1 0 · · · 0
...

...
. . .

...

0 · · · 0 λnk

U−1.

Therefore we can write

p11(n) = a1λ
n
1 + . . .+ akλ

n
k

and plugging in values for small n and using that p11(0) = 1 we can solve for a1, . . . , ak. If there

are complex eigenvalues, then they always appear in conjugate pairs. Suppose that there are only

two complex eigenvalues, λk−1 and λk. We write them in trigonometric form, i.e.

λk−1 = reiθ = r(cos θ + i sin θ) and λk = λk−1 = re−iθ = r(cos θ − i sin θ).

Since p11(n) is a real number, we can safely write the general expression for p11(n) as follows

p11(n) =
k−2∑
i=1

aiλi + ak−1r
n cos(nθ) + akr

n sin(nθ).

Then as before we plug in small values of n to solve for the coefficients a1, . . . , ak.

If the eigenvalues are not all distinct, then if eigenvalue λ is repeated once, we include the term

(an + b)λn in the sum above. This follows from the Jordan normal form of P . For higher multi-

plicities we include the analogous terms.

Example 3.3. Let P =

 0 1 0

0 1/2 1/2

1/2 0 1/2

. We want to calculate p11(n). Following the discussion

above we find the eigenvalues that are 1, i/2,−i/2. Since

i

2
=

1

2
(cos(π/2) + i sin(π/2)),

we can write

p11(n) = a+ b

(
1

2

)n
cos(nπ/2) + c

(
1

2

)n
sin(nπ/2).

Since p11(0) = 1, p11(1) = 0 and p11(2) = 0 we can write down the system of equations that a, b

and c satisfy to get

p11(n) =
1

5
+

(
1

2

)n(4

5
cos(nπ/2)− 2

5
sin(nπ/2)

)
.
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4 Communicating classes

We want to define a notion of connectivity for a Markov chain analogous to the definition of

connectivity for a graph.

Definition 4.1. Let X be a Markov chain with transition matrix P and values in I. For two states

x and y in I we say that x leads to y and write it x→ y if

Px(Xn = y for some n ≥ 0) > 0.

We say that x communicates with y if x→ y and y → x and we denote it by x↔ y.

We now give some equivalent conditions for two states to communicate.

Theorem 4.2. Let x and y be two states. Then the following are equivalent:

(1) x→ y;

(2) there exists a sequence of states x0 = x, x1, . . . , xk = y such that P (x0, x1) · · ·P (xk−1, xk) > 0;

(3) there exists n ≥ 0 such that pxy(n) > 0.

Proof. (1)⇔(3): The event {Xn = y for some n ≥ 0} is equal to

{Xn = y for some n ≥ 0} = ∪n≥0{Xn = y}.

So if Px(Xn = y for some n ≥ 0) > 0, then there exists some n ≥ 0 such that Px(Xn = y) > 0.

Clearly, if Px(Xn = y) > 0, then x→ y.

(2)⇔(3): Since pxy(n) is the (x, y) element of Pn we have

pxy(n) =
∑

x1,...,xn−1

P (x, x1) · · ·P (xn−1, xn).

Therefore the equivalence of (2) and (3) follows.

Corollary 4.3. The relation ↔ defines an equivalence relation on I.

Proof. We only need to check that for every x, y, z ∈ I we have x ↔ x and if x ↔ y and y ↔ z,

then x↔ z.

By (3) for n = 0 we see that x↔ x. Using (2) we get the transitivity property.

Definition 4.4. The equivalence classes induced by ↔ on I are called communicating classes.

We say that a class C is closed if whenever x ∈ C and x→ y, then y ∈ C.

A transition matrix P is called irreducible if it has a single communicating class, i.e. if for all

x, y ∈ I we have x↔ y.

A state x is called absorbing if {x} is a closed class. In other words, the Markov chain starting

from x always remains at x.
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5 Hitting times

Suppose that X is a Markov chain with transition matrix P with values in I and let A ⊆ I.

Definition 5.1. We define TA to be the first hitting time of A, i.e. TA is a random variable

TA : Ω→ {0, 1, . . .} ∪ {∞} given by

TA(ω) = inf{n ≥ 0 : Xn(ω) ∈ A}.

We use the convention that the infimum of the empty set is equal to ∞.

The hitting probability of A is defined to be the function hA : I → [0, 1] given by

hAi = Pi(TA <∞) .

The mean hitting time of A is defined to be the function kA : I → R+ ∪ {∞} given by

kAi = Ei[TA] =
∞∑
n=0

nPi(TA = n) +∞ · Pi(TA =∞) .

In this section we are going to show that the vectors hA and kA are the minimal nonnegative

solutions to certain systems of linear equations. Before stating the theorems, we will look at an

example to gain some intuition.

Example 5.2. Let X be the Markov chain with the following diagram:

Let A = {4}. What is hA2 ?

Starting from 2 after one step, the Markov chain could be at 1 with probability 1/2 or at 3 with

probability 1/2. If it hits 1, then it gets absorbed there. If instead it hits 3, then we can forget

where we started from by the Markov property (we will make this rigorous in the next theorem)

and start afresh from 3. So we would have

hA2 =
1

2
P1(TA <∞) +

1

2
hA3 =

1

2
hA3

hA3 =
1

2
hA2 +

1

2
P4(TA <∞) =

1

2
hA2 +

1

2
.

We can then solve the system to get hA2 = 1/3.

We next set B = {1, 4} and want to calculate kB2 . Starting from 2 we make one step and either get

absorbed at 1 or we go to 3. Then by the Markov property from 3 we start afresh. So similarly to
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above we have

kB2 = 1 +
1

2
kB3

kb3 = 1 +
1

2
kB2 .

Solving this system we obtain kB2 = 2.

Theorem 5.3. Let A ⊆ I. The vector of hitting probabilities (hAi : i ∈ I) solves the following

system of linear equations

hAi =

{
1 if i ∈ A∑

j P (i, j)hAj otherwise
.

Moreover, (hAi )i∈I is the minimal non-negative solution (hAi ≥ 0 for all i) to this system of equa-

tions, in the sense that if (xi)i∈I is another non-negative solution, then hAi ≤ xi for all i ∈ I.

Proof. We start by proving that (hAi )i∈I solves the system of linear equations. Clearly if i ∈ A,

then hAi = 1. So suppose now that i /∈ A. We can write the event {TA <∞} as a disjoint countable

union of events as follows

{TA <∞} = {X0 ∈ A} ∪
∞⋃
n=1

{X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}.

So taking probabilities of both sides and using the countable additivity property of probability

measures when the sets are disjoint we get

Pi(TA <∞) =

∞∑
n=1

Pi(X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A)

=
∞∑
n=1

P(X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A | X0 = i)

=
∞∑
n=1

∑
j

P(X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A,X1 = j | X0 = i)

=
∑
j

P (i, j)P(X1 ∈ A | X0 = i,X1 = j) +
∞∑
n=2

∑
j

P (i, j)P(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A | X0 = i,X1 = j) .

By the definition of a Markov chain we have for every j ∈ I

P(X1 ∈ A | X0 = i,X1 = j) = P(X1 ∈ A | X1 = j) = P(X0 ∈ A | X0 = j) .

By the simple Markov property for every n ≥ 2 and j ∈ I we have

P(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A | X0 = i,X1 = j) = P(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A | X1 = j)

= P(X0 /∈ A, . . . ,Xn−2 /∈ A,Xn−1 ∈ A | X0 = j) .
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Substituting these equalities above we obtain

hAi = Pi(TA <∞) =
∑
j

P (i, j)

(
Pj(X0 ∈ A) +

∞∑
n=1

Pj(X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A)

)

=
∑
j

P (i, j)

(
Pj(TA = 0) +

∞∑
n=1

Pj(TA = n)

)
=
∑
j

P (i, j)hAj

and this completes the proof of the first part of the theorem.

We next turn to prove the minimality property of (hAi )i∈I . Let (xi)i∈I be another non-negative

solution of the linear system. We will prove that for all i ∈ I we have hAi ≤ xi. For i ∈ A this

clearly holds, so we assume that i /∈ A. Then we have

xi =
∑
j∈A

P (i, j) +
∑
j /∈A

P (i, j)xj

Substituting (xj)j /∈A above from the linear equations we obtain

xi =
∑
j∈A

P (i, j) +
∑
j /∈A

P (i, j)

(∑
k∈A

P (j, k) +
∑
k/∈A

P (j, k)xk

)
.

Iterating we get

xi =
∑
j1∈A

P (i, j1) +
∑
j1 /∈A

∑
j2∈A

P (i, j1)P (j1, j2) + . . .+
∑

j1 /∈A,...,jn−1 /∈A,jn∈A

P (i, j1) · · ·P (jn−1, jn)

+
∑

j1 /∈A,...,jn−1 /∈A,jn /∈A

P (i, j1) · · ·P (jn−1, jn)xjn

= Pi(X1 ∈ A) + Pi(X1 /∈ A,X2 ∈ A) + . . .+ Pi(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A)

+
∑

j1 /∈A,...,jn−1 /∈A,jn /∈A

P (i, j1) · · ·P (jn−1, jn)xjn

= Pi(TA ≤ n) +
∑

j1 /∈A,...,jn−1 /∈A,jn /∈A

P (i, j1) · · ·P (jn−1, jn)xjn .

Since xj ≥ 0 for all j we get that for all n ∈ N

xi ≥ Pi(TA ≤ n) .

Taking the limit as n → ∞ and using that {TA ≤ n} are increasing events with ∪n{TA ≤ n} =

{TA <∞} we obtain

xi ≥ lim
n→∞

Pi(TA ≤ n) = hAi

and this finishes the proof.

Going back to Example 5.2 we want to find hA2 using the theorem above. We then have hA4 = 1
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and

hA2 =
1

2
hA1 +

1

2
hA3

hA3 =
1

2
hA2 +

1

2
hA4 =

1

2
hA2 +

1

2
.

Solving the system we get

hA2 =
2

3
hA1 +

1

3

hA3 =
1

3
hA1 +

2

3
.

So we see that we cannot determine the value of hA1 simply from these equations. But using the

minimality condition we can deduce that hA1 = 0. Of course from the formulation of the problem

it was clear that hA1 = 0, since there is no route from 1 to 4. There could be more complicated

examples though (e.g. for infinite state spaces) where it is not possible to determine the values of

some components other than using the minimality condition.

Example 5.4. We consider a simple random walk on Z+ with transition probabilities

P (0, 1) = 1, P (i, i+ 1) = p and P (i, i− 1) = q for i ≥ 1

with p + q = 1 and p, q ∈ (0, 1). Let hi = Pi(T0 <∞) for i ∈ N. Then h0 = 1 and for every i ≥ 1

we have

hi = phi+1 + qhi−1.

If p 6= q, then the general solution will be of the form

hi = a+ b

(
q

p

)i
for i ≥ 1.

Since h has to be non-negative and minimal, it follows that if p < q, then a = 1 and b = 0, i.e.

hi = 1 for all i ≥ 1. On the other hand, if q < p, then since h0 = 1, we get a = 0 and b = 1, which

means that hi = (q/p)i.

In the symmetric case, i.e. when p = q, then the general solution is of the form

hi = a+ bi.

Non-negativity and minimality impose the conditions a = 1 and b = 0, which means that hi = 1

for all i.

Example 5.5 (Birth and death chain). A birth and death chain is a Markov chain on N with

transition probabilities

P (0, 0) = 1, P (i, i+ 1) = pi and P (i, i− 1) = qi = 1− pi for i ≥ 1,

with qi, pi ∈ (0, 1). This is a Markov chain that models the evolution of the population size, where

we assume that at every step if the current population size is i, then there is probability pi of having

a birth and probability qi of having a death. We are interested in the probability that 0 is hit,
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which in other words means that the population goes extinct. To this end we set hi = Pi(T0 <∞).

Then h0 = 1 and

hi = pihi+1 + qihi−1.

Rearranging the above equality we get

pi(hi+1 − hi) = qi(hi − hi−1).

Setting ui = hi − hi−1 for i ≥ 1 we get from the above equality that

ui+1 =
qi
pi
ui = . . . = u1 ·

i∏
j=1

qj
pj
.

Note that u1 = h1 − 1, and hence

hi =

i∑
j=1

uj + 1 = 1− (1− h1) ·
i∑

j=2

(
j−1∏
k=1

qk
pk

)
+ (1− h1).

Writing

γi =

i∏
j=1

qj
pj

and γ0 = 1,

we have

hi = 1− (1− h1)
i−1∑
j=0

γj

and requiring h to be a non-negative solution we obtain

1− h1 ≤
1∑∞
j=0 γj

and to achieve minimality we need to take

h1 = 1− 1∑∞
j=0 γj

.

So if
∑∞

j=0 γj <∞, then we get

hi =

∑∞
j=i γj∑∞
j=0 γj

,

while if
∑∞

j=0 γj =∞, then

hi = 1 for all i ≥ 1.

Recall that kAi = Ei[TA] is the mean hitting time of the set A.
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Theorem 5.6. The vector (kAi )i∈I is the minimal non-negative solution to the linear system

kAi =

{
0 if i ∈ A
1 +

∑
j /∈A P (i, j)kAj otherwise

.

Proof. It is clear that kAi = 0 for i ∈ A, so from now on we assume that i /∈ A.

Using the simple Markov property as in the proof of Theorem 5.3 we then have

kAi =
∞∑
n=0

Pi(TA > n) =
∞∑
n=0

nP(X0 /∈ A,X1 /∈ A, . . . ,Xn /∈ A | X0 = i)

= 1 +
∞∑
n=1

P(X1 /∈ A, . . . ,Xn /∈ A | X0 = i)

= 1 +

∞∑
n=1

∑
j

P (i, j)P(X1 /∈ A, . . . ,Xn /∈ A | X1 = j,X0 = i)

= 1 +

∞∑
n=1

∑
j

P (i, j)Pj(X0 /∈ A, . . . ,Xn−1 /∈ A)

= 1 +
∞∑
n=0

∑
j

P (i, j)Pj(TA > n) = 1 +
∑
j

P (i, j)kAj = 1 +
∑
j /∈A

P (i, j)kAj ,

where the last equality follows since kAj = 0 for j ∈ A.

Next we prove the minimality property of (kAi )i∈I . Let (xi)i∈I be another non-negative solution to

the system of linear equations. Then xi = 0 for i ∈ A and iterating the linear equations we get

xi = 1 +
∑
j1 /∈A

P (i, j1) +
∑
j1 /∈A

∑
j2 /∈A

P (i, j1)P (j1, j2) + . . .+
∑

j1 /∈A,...,jn /∈A

P (i, j1) · · ·P (jn−1, jn)

+
∑

j1 /∈A,...,jn /∈A,jn+1 /∈A

P (i, j1) · · ·P (jn, jn+1)xjn+1 .

Since xj ≥ 0 for all j, we get

xi ≥ 1 +
∑
j1 /∈A

P (i, j1) +
∑
j1 /∈A

∑
j2 /∈A

P (i, j1)P (j1, j2) + . . .+
∑

j1 /∈A,...,jn /∈A

P (i, j1) · · ·P (jn−1, jn)

= 1 + Pi(TA > 1) + . . .+ Pi(TA > n) = Pi(TA > 0) + . . .+ Pi(TA > n) ,

which means that for all n ∈ N we have

xi ≥
n∑
k=0

Pi(TA > k) .

Sending n→∞ we immediately then see that xi ≥ kAi and this completes the proof.
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6 Strong Markov property

For a Markov chain we have proved that if we condition on {Xm = i}, where m ∈ N, then the future

of the process is a Markov chain starting from i with transition matrix P and it is independent of

X0, . . . , Xm (see Theorem 2.4). The question is whether we could replace the deterministic time

m by a random time and still preserve the Markov property. It is quite clear that not any random

time could work, simply because it could contain some information about the future of the process,

in which case it would ruin the Markov property. It turns out that we can extend Theorem 2.4 to

the case of a random time which is a stopping time as we now define.

Definition 6.1. A stopping time T is a random variable T : Ω → {0, 1, . . .} ∪ {∞} with the

property that for every n ∈ N the event {T = n} only depends on X0, . . . , Xn.

Let us now look at some examples.

Hitting times of sets are stopping times Let A ⊆ I and let TA = inf{n ≥ 0 : Xn ∈ A}. Then

TA is a stopping time, since for all n we have

{TA = n} = {X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}.

Last exit times are NOT stopping times Let A ⊆ I and let LA = sup{n ≥ 0 : Xn ∈ A}. Then

LA is not a stopping time, since for any n we have that the event {LA = n} depends on (Xm+n)m≥0.

Theorem 6.2 (Strong Markov property). Let X be Markov(λ, P ) and let T be a stopping time.

Then conditional on T < ∞ and XT = i, we have that (XT+n)n≥0 is Markov(δi, P ) and it is

independent of X0, . . . , XT .

Proof. We need to show that for every n ≥ 0, all x0, . . . , xn ∈ I and every w ∈ ∪kIk we have

P(XT = x0, . . . , XT+n = xn, (X0, . . . , XT ) = w | T <∞, XT = i)

= δix0P (x0, x1) · · ·P (xn−1, xn) · P((X0, . . . , XT ) = w | T <∞, XT = i) .

Suppose that w has length k. Then

P(XT = x0, . . . , XT+n = xn, (X0, . . . , XT ) = w | T <∞, XT = i)

=
P(Xk = x0, . . . , Xk+n = xn, (X0, . . . , Xk) = w, T = k,Xk = i)

P(T <∞, XT = i)
.

Since the event {T = k} only depends on X0, . . . , Xk we have by the simple Markov property,

Theorem 2.4,

P(Xk = x0, . . . , Xk+n = xn, (X0, . . . , Xk) = w, T = k,Xk = i)

= P(Xk = x0, . . . , Xk+n = xn | (X0, . . . , Xk) = w,Xk = i, T = k)P((X0, . . . , Xk) = w,Xk = i, T = k)

= δix0P (x0, x1) · · ·P (xn−1, xn)P((X0, . . . , Xk) = w,Xk = i, T = k) .
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Therefore, we deduce

P(XT = x0, . . . , XT+n = xn, (X0, . . . , XT ) = w | T <∞, XT = i)

= δix0P (x0, x1) · · ·P (xn−1, xn)
P((X0, . . . , Xk) = w,Xk = i, T = k)

P(T <∞, XT = i)

= δix0P (x0, x1) · · ·P (xn−1, xn)P((X0, . . . , XT ) = w | XT = i, T <∞) ,

which completes the proof the theorem.

Example 6.3. We now want to apply the strong Markov property to derive in a slightly different

way the hitting probabilities of 0 for a simple random walk on N with transition probabilities

P (0, 1) = 1, P (i, i− 1) = 1/2 and P (i, i+ 1) = 1/2 for i ≥ 1.

Let hi = Pi(T0 <∞). Then writing the hitting equations as before we get

h1 =
1

2
+

1

2
h2.

Now notice that in order to hit 0 starting from 2 we first need to hit 1 and then 0. We also notice

that by the strong Markov property, under P2 conditional on T1 <∞ we can express T0 = T1 + T̃0,

where T̃0 is independent of T1 and has the same distribution as T0 under P1. Therefore we have

P2(T0 <∞) = P2(T1 <∞, T0 <∞) = P2

(
T1 + T̃0 <∞

∣∣∣ T1 <∞)P2(T1 <∞)

= P1(T0 <∞)P2(T1 <∞) = h21.

Substituting this above we deduce

h1 =
1

2
+

1

2
h21 ⇒ h1 = 1.

7 Transience and recurrence

Let X be a Markov chain with state space I and transition matrix P .

Definition 7.1. A state i ∈ I is called recurrent if

Pi(Xn = i for infinitely many n) = 1.

A state i ∈ I is called transient if

Pi(Xn = i for infinitely many n) = 0.

Later in this section we are going to establish a dichotomy for transience and recurrence, i.e. we

will show that every state is either transient or recurrent.

Definition 7.2. We define the successive times at which X visits i as follows: first we set T
(0)
i = 0

16



and for k ≥ 1 inductively we set

T
(r+1)
i = inf{n ≥ T (k)

i + 1 : Xn = i}.

We usually call Ti = T
(1)
i the first return time to i. We also define the successive excursion lengths

from i by setting

S
(k)
i =

{
T
(k)
i − T (k−1)

i if T
(k−1)
i <∞

0 otherwise
.

We set fi = Pi(Ti <∞) and write Vi for the total number of visits to i, i.e.

Vi =

∞∑
`=0

1(X` = i).

Lemma 7.3. For every r ∈ N we have

Pi(Vi > r) = f ri .

Proof. We prove the lemma by induction. For r = 1 we have

Pi(Vi > 1) = Pi(Ti <∞) = fi.

Suppose the claim holds for all r ≤ k. We will prove it also holds for r = k + 1. Indeed, we have

Pi(Vi > k + 1) = Pi
(
T
(k+1)
i <∞

)
= Pi

(
T
(k)
i <∞, T (k+1)

i <∞
)

= Pi
(
T
(k+1)
i <∞

∣∣∣ T (k)
i <∞

)
Pi
(
T
(k)
i <∞

)
.

We now use the strong Markov property applied to the stopping time T
(k)
i . Conditional on T

(k)
i <

∞, since at this time the Markov chain is at i, it follows that T
(k+1)
i has the same distribution as Ti

under Pi. Therefore we get

Pi(Vi > k + 1) = Pi
(
T
(1)
i <∞

)
Pi
(
T
(k)
i <∞

)
= fk+1

i

and this finishes the proof.

We now present a criterion for a state to be either recurrent or transient.

Theorem 7.4. Let X be a Markov chain and i ∈ I. Then we have the following dichotomy:

(a) If Pi(Ti <∞) = 1, then i is recurrent and
∑

n pii(n) =∞.

(b) If Pi(Ti <∞) < 1, then i is transient and
∑

n pii(n) <∞.

Proof. First we write the expectation of Vi starting from i as follows

Ei[Vi] = Ei

[ ∞∑
n=0

1(Xn = i)

]
=

∞∑
n=0

pii(n) (7.1)
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(a) In this case we have fi = 1, and hence from Lemma 7.3 we get that Vi =∞ with probability 1,

which means that i is recurrent. Moreover, Ei[Vi] =∞, which implies using (7.1) that

∞∑
n=0

pii(n) =∞.

(b) If fi < 1, then see from Lemma 7.3 that Vi is a geometric random variable of mean 1/(1−fi) <
∞, which implies that Vi is finite with probability 1, i.e. that i is transient and moreover Ei[Vi] <∞,

which means
∞∑
n=0

pii(n) <∞.

This completes the proof.

Theorem 7.5. Let x, y ∈ I be two states that communicate, i.e. x↔ y. Then either they are both

recurrent or both transient.

Proof. Suppose that x is recurrent. Then

∞∑
n=0

pxx(n) =∞.

Since x↔ y there exist m, ` ∈ N such that pxy(m) > 0 and pyx(`) > 0. So then we have∑
n

pyy(n) ≥
∑
n

pyy(n+m+ `) ≥
∑
n

pyx(`)pxx(n)pxy(m) = pyx(`)pxy(m)
∑
n

pxx(n) =∞,

which means that y is also recurrent and finishes the proof.

Corollary 7.6. Either all states in a communicating class are transient or they are all recurrent.

Theorem 7.7. If C is a recurrent communicating class, then it must be closed.

Proof. Suppose C is not closed. Then there must exist x ∈ C and y /∈ C such that x→ y. Let m

be such that pxy(m) > 0. Then since once X hits y it cannot come back to x we get

Px(Vx <∞) ≥ Px(Xm = y) > 0,

implying that x is transient, which is a contradiction.

Theorem 7.8. A finite closed class is recurrent.

Proof. Let C be a finite closed communicating class and let x ∈ C. Then by the pigeonhole

principle there exists y ∈ C such that

Px(Xn = y for infinitely many n) > 0.
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Since x ↔ y, there exists m ≥ 0 such that Py(Xm = x) > 0. Therefore by the simple Markov

property we get

Py(Xn = y for infinitely many n) ≥ Py(Xm = x,Xn = y for infinitely many n ≥ m)

= Py(Xn = y for infinitely many n ≥ m | Xm = x)Py(Xm = x)

= Px(Xn = y for infinitely many n)Py(Xm = x) > 0.

This now implies from Theorem 7.4 that y is recurrent, and hence by Theorem 7.5 we conclude

that C is a recurrent class.

Theorem 7.9. Let P be irreducible and recurrent. Then for all x, y we have

Px(Ty <∞) = 1.

Proof. Since P is irreducible, there exists m ≥ 0 such that pyx(m) > 0. Also since y is recurrent

and by the simple Markov property, we get

1 = Py(Xn = y for infinitely many n) =
∑
z

Py(Xm = z,Xn = y for infinitely many n ≥ m)

=
∑
z

pyz(m)Pz(Xn = y for infinitely many n) .

Now notice that by the strong Markov property at time Ty we get

Pz(Xn = y for infinitely many n) = Pz(Ty <∞)Py(Xn = y for infinitely many n) = Pz(Ty <∞) .

Substituting this above yields

1 = Py(Xn = y for infinitely many n) =
∑
z

pyz(m)Pz(Ty <∞) .

Since pyx(m) > 0 and
∑

z pyz(m) = 1, we get from the above equality that

Px(Ty <∞) = 1

and this concludes the proof.

7.1 Random walks on Zd

In this section we are going to show that simple random walk on Z and Z2 is recurrent, while it is

transient in Zd for d ≥ 3.

Definition 7.10. A simple random walk in Zd is a Markov chain that has transition probabilities

P (x, x+ ei) = P (x, x− ei) =
1

2d
for all x ∈ Zd,

where (ei)i≤d is the standard basis of Rd.
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Theorem 7.11 (Polya). Simple random walk in Zd is recurrent when d ≤ 2 and transient for

d ≥ 3.

Random walk on Z

Let X be a simple symmetric random walk on Z, i.e. it has transition probabilities

P (x, x− i) = P (x, x+ 1) =
1

2
∀ x ∈ Z.

We will prove that it is recurrent by showing that∑
n

p00(n) =∞.

First of all we notice that p00(n) is non-zero when n is even. So let’s calculate P0(X2n = 0). In

order to be at 0 at time 2n when the walk starts from 0, it needs to make n steps to the right and

n steps to the left. There are
(
2n
n

)
ways to pick the steps that will be to the right and then the

remaining ones will be to the left. Each choice of right/left steps has probability 1/22n of occurring.

Therefore we get

P0(X2n = 0) =

(
2n

n

)
·
(

1

2

)2n

=
(2n)!

n!n!
· 1

22n
.

Using Stirling’s formula, i.e. that as n→∞

n! ∼
√

2πn · e−n · nn,

we get

P0(X2n = 0) ∼ 1√
πn

.

Therefore, for n0 sufficiently large and n ≥ n0 we get

p00(2n) ≥ 1

2
√
πn

,

and hence ∑
n

p00(2n) ≥
∑
n≥n0

1

2
√
πn

=∞,

which implies that the walk is recurrent.

Simple asymmetric random walk on Z

Suppose that X is a simple random walk on Z with transition probabilities

P (i, i+ 1) = p and P (i, i− 1) = q

with p+ q = 1 and p, q ∈ (0, 1). Then the same reasoning as above gives

p00(2n) =

(
2n

n

)
pnqn ∼ (4pq)n√

πn
,
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where in the last step we used again Stirling’s formula as n → ∞. If p 6= q, then 4pq < 1, and

hence ∑
n

p00(2n) ≤
∑
n≥n0

2(4pq)n <∞,

thus proving transience.

Random walk on Z2

We will now prove recurrence of simple random walk on Z2. We will use a very nice trick that

works in two dimensions by projecting the walk on the two diagonal lines y = x and y = −x. More

precisely, let Xn be the simple random walk in Z2and let f be the transformation

f(x, y) =

(
x+ y√

2
,
x− y√

2

)
.

Then we write f(Xn) as f(Xn) = (X+
n , X

−
n ).

The reason we project on the two diagonals is because this results into two independent simple

random walks in Z/
√

2 as we will explain now.

Lemma 7.12. Both (X+
n ) and (X−n ) are simple random walks in Z/

√
2 and they are independent.

Proof. We can write Xn =
∑n

i=1 ξi where (ξi)i are i.i.d. random variables distributed as follows

P(ξ1 = (1, 0)) = P(ξ1 = (−1, 0)) = P(ξ1 = (0, 1)) = P(ξ1 = (0,−1)) =
1

4
.

Then writing ξi = (ξ1i , ξ
2
i ), we have X+

n =
∑n

i=1(ξ
1
i +ξ2i )/

√
2 and X−n =

∑n
i=1(ξ

1
i −ξ2i )/

√
2. One can

then check that both X+
n and X−n are simple random walks in Z/

√
2. To prove the independence,

since the (ξi) are independent, it is enough to show that ξ1i + ξ2i is independent of ξ1i − ξ2i . This

follows from calculating all possible probabilities, i.e.

P
(
ξ1i + ξ2i = 1, ξ1i − ξ2i = −1

)
= P(ξi = (0, 1)) =

1

4
= P

(
ξ1i + ξ2i = 0

)
P
(
ξ1i − ξ2i = −1

)
and similarly for all the other possible events.

We now notice that Xn = 0 if and only if both X+
n = 0 and X−n = 0. Using the independence we

proved above we obtain

P0(X2n = 0) = P0

(
X+

2n = 0
)
P0

(
X−2n = 0

)
∼ A

n

using the estimates we established in the 1-dimensional case. Therefore, we conclude∑
n

p00(2n) =∞,

showing that the random walk in Z2 is recurrent.

Simple random walk in Z3
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As in the previous cases, X can be back at 0 only at even times. In order for X to be at 0 at time

2n it must make i steps up, i steps down, j steps north and j south and k east and k west for some

i, j, k ≥ 0 with i+ j+k = n. There are
(

2n
i,i,j,j,k,k

)
ways of choosing which steps will be done in each

direction. So we get

p00(2n) =
∑
i,j,k≥0
i+j+k=n

(
2n

i, i, j, j, k, k

)
·
(

1

6

)2n

=

(
2n

n

)(
1

2

)2n ∑
i,j,k≥0
i+j+k=n

(
n

i, j, k

)2

·
(

1

3

)2n

.

We now see that ∑
i,j,k≥0
i+j+k=n

(
n

i, j, k

)
·
(

1

3

)n
= 1,

since the sum corresponds to the total probability of all the ways of placing n balls into 3 boxes

uniformly at random. Let us now take n = 3m. Then by direct comparison, it is not hard to see

that (
n

i, j, k

)
≤
(

n

m,m,m

)
.

Therefore, we deduce

p00(2n) ≤
(

2n

n

)(
1

2

)2n( n

m,m,m

)(
1

3

)n
∼ C

n3/2
,

where C is a positive constant and this asymptotic follows again from Stirling’s formula. We thus

get ∑
m

p00(6m) <∞.

Using that p00(6m) ≥ (1/6)2p00(6m− 2) and p00(6m) ≥ (1/6)4p00(6m− 4) we get that∑
n

p00(2n) <∞

and this concludes the proof that simple random walk on Z3 is transient.

8 Invariant distribution

Let I be a discrete set. Recall that λ = (λi : i ∈ I) is called a (probability) distribution if λi ≥ 0

for all i and
∑

i∈I λi = 1.

Before defining the notion of an invariant distribution (or otherwise called equilibrium or stationary)

let us start with an example.

Let us consider a 2 state Markov chain with states called 1 and 2 and let

P (1, 2) = P (1, 1) = P (2, 1) = P (2, 2) =
1

2
.

As n→∞ where do we expect the chain to be? Will state 1 be more likely than state 2? Clearly,
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by symmetry, we expect both of them to be equally likely. So we expect, p11(n) → 1/2 and

p12(n)→ 1/2 as n→∞ and similarly starting from 2.

We can think of (1/2, 1/2) as the equilibrium distribution of the Markov chain, since running it for

a long time we expect it to equilibrate at (1/2, 1/2).

Suppose next that we want to define a probability distribution π on the state space I, so that if

X0 ∼ π, then Xn ∼ π for all n. Let’s see what π should satisfy in this case. Since X0 ∼ π, we get

P(X1 = j) =
∑
i

P(X0 = i,X1 = j) =
∑
i

P(X0 = i)P(X1 = j | X0 = i) =
∑
i

π(i)P (i, j).

So if we want Xn ∼ π for all n, it follows that

π(j) =
∑
i

π(i)P (i, j),

or in matrix form

π = πP,

where π is a row vector.

Definition 8.1. A probability distribution π = (πi : i ∈ I) is called an invariant/equilibrium/stationary

distribution for the Markov chain with transition matrix P if π = πP .

Theorem 8.2. Let X be a Markov chain with transition matrix P and invariant distribution π.

If X0 ∼ π, then Xn ∼ π for all n.

Proof. We will prove it by induction. For n = 0 it holds, since X0 ∼ π. Suppose it holds for n,

then

P(Xn+1 = j) =
∑
i

P(Xn = i,Xn+1 = j) =
∑
i

P(Xn = i)P (i, j) =
∑
i

πiP (i, j) = πj ,

where for the penultimate equality we used the induction hypothesis and for the last one we used

that π = πP .

Theorem 8.3. Let I be a finite state space and suppose that there exists i ∈ I such that for all j

pij(n)→ πj as n→∞.

Then π = (πj : j ∈ I) is an invariant distribution.

Proof. We first show that π is a probability distribution. Indeed, we have∑
j∈I

πj =
∑
j∈I

lim
n→∞

pij(n) = lim
n→∞

∑
j∈I

pij(n) = 1,

where we used that I is a finite set, so we can safely interchange the sum and the limit.
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We next prove that π = πP . Let j ∈ I. we have

πj = lim
n→∞

pij(n) = lim
n→∞

∑
k

pik(n− 1)P (k, j) =
∑
k

lim
n→∞

pik(n− 1)P (k, j) =
∑
k

πkP (k, j),

where again we were able to interchange sum and limit because I is finite.

Remark 8.4. Note that the assumption that I is finite is essential in the theorem above. Take for

instance the simple symmetric random walk on Z as we studied previously. Then we showed that

p00(n) ∼ C√
n

as n→∞,

where C is a positive constant. It is not hard to show that also p0x(n)→ 0 as n→∞ for all x. So

in this case, the limit is not a probability distribution.

Example 8.5. Let us consider again the two state Markov chain with

P =

(
1/2 1/2

1/2 1/2

)
.

By calculating the eigenvalues or otherwise we get

p11(n)→ 1

2
and p12(n)→ 1

2
as n→∞

So π = (1/2, 1/2) is an invariant distribution. Solving π = πP we also get π = (1/2, 1/2).

We now want to understand whether a transition matrix has an invariant distribution and whether

this is unique. We will only talk about irreducible Markov chains, since if the state space consists

of several communicating classes, then the invariant distribution might not be unique.

Remark 8.6. Note that for an irreducible transition matrix P on a finite state space I one can

deduce the existence of an invariant distribution using the Perron-Frobenius theorem, a result in

linear algebra. The following theorem works both in the finite and infinite setting using probabilistic

arguments.

We next define a measure in terms of the numbers of visits to a vertex during an excursion from

another vertex. Afterwards we will show that when P is irreducible and recurrent, this is always

an invariant measure.

Definition 8.7. Let k ∈ I. Recall that Tk is the first return time to k, i.e.

Tk = inf{n ≥ 1 : Xn = k}.

We define νk(i) to be the expected number of visits to i during an excursion from k, i.e.

νk(i) = Ek

[
Tk−1∑
n=0

1(Xn = i)

]
.
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Theorem 8.8. Suppose that P is irreducible and recurrent. Then νk is an invariant measure,

i.e. νk = νkP , satisfying 0 < νk(i) <∞ and νk(k) = 1.

Proof. By the definition of νk it is clear that νk(k) = 1. We next prove that νk is invariant.

First we note that since the chain is recurrent, then Tk <∞ with probability 1 and since XTk = 1

by definition of Tk, we obtain

νk(i) = Ek

[
Tk∑
n=1

1(Xn = i)

]
= Ek

[ ∞∑
n=1

1(n ≤ Tk) · 1(Xn = i)

]
=

∞∑
n=1

Pk(Xn = i, n ≤ Tk) . (8.1)

By the law of total probability we get for all n ≥ 1

Pk(Xn = i, n ≤ Tk) =
∑
j

Pk(Xn = i,Xn−1 = j, n ≤ Tk) .

We now claim that the event {Tk ≥ n} only depends on X0, . . . , Xn−1. Indeed, {Tk ≥ n} is the

complement of {Tk ≤ n− 1} which is the union

{Tk ≤ n− 1} =
⋃

`≤n−1
{Tk = `}.

Using that Tk is a stopping time, each of the events of the union only depends on X0, . . . , Xk, and

hence the claim follows. Therefore, we get

Pk(Xn = i,Xn−1 = j, n ≤ Tk) = Pk(Xn = i | Xn−1 = j, n ≤ Tj)Pk(Xn−1 = j, n ≤ Tk)
= P (j, i)Pk(Xn−1 = j, n ≤ Tk) ,

where for the second equality we used the Markov property. Plugging this back into (8.1) we deduce

νk(i) =
∞∑
n=1

∑
j∈I

P (j, i)Pk(Xn−1 = j, n ≤ Tk) =
∑
j∈I

P (j, i)
∞∑
n=1

Ek[1(Xn−1 = j),1(n ≤ Tk)]

=
∑
j∈I

P (j, i)Ek

[
Tk−1∑
n=0

1(Xn = j)

]
= (νkP )i,

thus proving that νk is an invariant measure.

To show that 0 < νk(i) < ∞, let m,n be such that pki(n) > 0 and pik(m) > 0 (which exist by

irreducibility). Then using the invariance of νk we get

νk(i) ≥ νk(k)pki(n) = pki(n) > 0,

since νk(k) = 1. To prove the finiteness, we use the invariance of νk at k, i.e.

1 = νk(k) ≥ pik(m)νk(i)⇒ νk(i) ≤
1

pik(m)
<∞

and this concludes the proof.
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Theorem 8.9. Suppose that P is an irreducible transition matrix and let λ be an invariant measure

satisfying λk = 1. Then λ ≥ νk.

If P is also recurrent, then λ = νk.

Proof. Since λ is invariant we get

λi = P (k, i) +
∑
j1 6=k

λjP (j, i) = P (k, i) +
∑
j1 6=k

P (k, j1)P (j1, i) +
∑

j1,j2 6=k
P (j2, j1)P (j1, i)λj2

= P (k, i) +
∑
j1 6=k

P (k, j1)P (j1, i) + · · ·+
∑

j1,...,jn−1 6=k
P (k, jn−1) · · ·P (j2, j1)P (j1, i)

+
∑

j1,...,jn 6=k
λjnP (jn, jn−1) · · ·P (j2, j1)P (j1, i).

Since λ is a measure, it follows that λx ≥ 0 for all x, and hence for all i 6= k

λi ≥ P (k, i) +
∑
j1 6=k

P (k, j1)P (j1, i) + · · ·+
∑

j1,...,jn−1 6=k
P (k, jn−1) · · ·P (j2, j1)P (j1, i)

= Pk(X1 = i, Tk ≥ 1) + Pk(X2 = i, Tk ≥ 2) + · · ·+ Pk(Xn = i, Tk ≥ n)

=
n∑
`=1

Pk(X` = i, Tk ≥ `)→
∞∑
`=1

Pk(X` = i, Tk ≥ `) = νk(i),

thus proving that λi ≥ νk(i) for all i.

Suppose next that P is also recurrent. Then νk is an invariant measure by Theorem 8.8. So λ− νk
is an invariant measure, since λ ≥ νk. It also satisfies that λk − νk(k) = 0. By irreducibility there

exists m > 0 such that pik(m) > 0. Using the invariance property we get

0 = λk − νk(k) =
∑
j

(λj − νk(j))pjk(m) ≥ (λi − νk(i))pik(m),

which implies that λi = νk(i) and this finishes the proof.

So far we have established that if P is irreducible and recurrent, then it has a unique invariant

measure up to multiplicative constants. The question is when we can get an invariant distribution

out of an invariant measure. In order to get a distribution, the total mass of the invariant measure

has to be finite. So let us fix k ∈ I and consider the invariant measure νk. Then we have

∑
i∈I

νk(i) =
∑
i∈I

Ek

[
Tk−1∑
n=0

1(Xn = i)

]
= Ek

[
Tk−1∑
n=0

∑
i∈I

1(Xn = i)

]
= Ek[Tk] .

We thus see that in order to be able to normalise and get an invariant distribution, we require

Ek[Tk] <∞. This leads us to the following definition.

Definition 8.10. Let i ∈ I be a recurrent state i.e. if Ti = inf{n ≥ 1 : Xn = i} is the first return

time to i, then Pi(Ti <∞) = 1. We call i positive recurrent if Ti also has finite expectation, i.e.

Ei[Ti] <∞.
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If Ei[Ti] =∞, then i is called null recurrent.

Theorem 8.11. Suppose that P is an irreducible transition matrix. Then the following are equiv-

alent:

(i) every state is positive recurrent;

(ii) some state is positive recurrent;

(iii) P has an invariant distribution π.

If any of the above holds, then πi = 1
Ei[Ti]

for every i.

Proof. Obviously (i) implies (ii). Suppose now that (ii) holds. We will prove that (iii) holds too.

Suppose that k is the positive recurrent state and consider the invariant measure νk. Then

∑
i∈I

νk(i) =
∑
i∈I

Ek

[
Tk−1∑
n=0

1(Xn = i)

]
= Ek[Tk] <∞,

since k is positive recurrent. So if we define for every i

πi =
νk(i)

Ek[Tk]
,

then π is an invariant distribution.

Suppose next that (iii) holds and let k be a state. We want to show that k is positive recurrent.

First we show that πk > 0. Let i ∈ I be such that πi > 0 and by irreducibility there exists n ≥ 0

such that pik(n) > 0. By stationarity of π we get

πk =
∑
j∈I

πjpjk(n) ≥ πipik(n) > 0.

So we can define a new invariant measure λi = πi/πk for every i ∈ I. Also λk = 1, and hence by

Theorem 8.9 we get that λ ≥ νk, which implies

Ek[Tk] =
∑
i∈I

νk(i) ≤
∑
i∈I

λi =
1

πk
<∞,

since πk > 0. This proves that k is positive recurrent.

For the last part, let k ∈ I. Then k is positive recurrent by (i), and therefore also recurrent. So

the measure λ that we defined above must be equal to νk by Theorem 8.9. We thus obtain that∑
i∈I

πi
πk

=
∑
i∈I

νk(i) = Ek[Tk] ,

which using that π is a distribution gives

1

πk
= Ek[Tk]

and completes the proof.
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Corollary 8.12. Suppose that P is an irreducible matrix and it has an invariant distribution π.

Then for all x, y we have

νx(y) =
π(y)

π(x)
.

Example 8.13. Let X be a simple symmetric random walk on Z, i.e.

P (x, x+ 1) = P (x, x− 1) =
1

2
for all x ∈ Z.

It is immediate to check that πi = 1 for all i ∈ Z is an invariant measure, since

πi =
1

2
πi+1 +

1

2
πi−1.

By Theorem 8.9, since P is a recurrent walk, we get that all invariant measures are multiples of

π. We thus deduce that X is not positive recurrent, since
∑

i∈Z πi = ∞, and hence we cannot

normalise to obtain a probability distribution.

Remark 8.14. We note that the existence of an invariant measure does not imply recurrence.

Indeed, let X be a simple symmetric random walk on Z3. Then πi = 1 for all i ∈ Z3 is an invariant

measure, but X is transient as we have already showed.

Example 8.15. Let X be an asymmetric random walk on Z with transition probabilities

P (x, x− 1) = q and P (x, x+ 1) = p

with p > q and p+ q = 1. Writing down the equations that an invariant measure π should satisfy

we get

πi = πi−1p+ πi+1q,

which we can solve to get

πi = a+ b

(
p

q

)i
.

So here uniqueness up to multiplicative constants does not hold.

Example 8.16. Let X be a random walk on Z+ with transition probabilities

P (x, x− 1) = q > p = P (x, x+ 1) for x ≥ 1

and p+ q = 1. Suppose also that P (0, 1) = p and P (0, 0) = q. We look for an invariant distribution

by solving π = πP . We have

π0 = qπ1 + qπ0

πk = pπk−1 + qπk+1 for all k ≥ 1.

Solving the above system we get

π1 = π0 ·
p

q
and πk =

(
p

q

)k
· π0.
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So we can normalise π in order to get a probability distribution by taking π0 = 1− p/q. We then

get

πk =

(
p

q

)k
·
(

1− p

q

)
.

Since we found an invariant distribution, it follows that X is positive recurrent.

9 Time reversibility

We start with a lemma which says that if a Markov chain is started from stationarity and we reverse

time, then we obtain another Markov chain with the same invariant distribution.

Proposition 9.1. Let X be a Markov chain with transition matrix P which is irreducible and has

invariant distribution π. Fix N ∈ N and suppose that X0 ∼ π. Then the process (Yn)0≤n≤N defined

via Yn = XN−n is a Markov chain with transition matrix P̂ given by

P̂ (x, y) =
π(y)

π(x)
P (y, x) for all x, y.

Moreover, P̂ is irreducible and has invariant distribution π.

Proof. First we check that P̂ is indeed a transition matrix. We have∑
y

P̂ (x, y) =
∑
y

π(y)

π(x)
P (y, x) =

π(x)

π(x)
= 1,

where for the second equality we used that π is invariant, i.e. that π = πP .

We next show that Y is a Markov chain. Let y0, . . . , yN ∈ I. Then

P(Y0 = y0, . . . , Yn = yN ) = P(X0 = yN , . . . , XN = y0)

= π(yN )P (yN , yN−1) · · ·P (y1, y0)

= π(y0)P̂ (y0, y1) · · · P̂ (yN−1, yN ),

which shows that Y is Markov(π, P̂ ).

We check now that π is invariant for P̂ . Indeed, we have

∑
x

π(x)P̂ (x, y) =
∑
x

π(x) · π(y)

π(x)
P (y, x) =

∑
x

π(y)P (y, x) = π(y),

since P is a stochastic matrix.

Finally, to prove that P̂ is irreducible, let x, y be two states. Then there exists a sequence of states

x0 = x, x1, . . . , xk = y such that P (x0, x1) · · ·P (xk−1, xk) > 0. But

P̂ (xk, xk−1) · · · P̂ (x1, x0) = π(x0)P (x0, x1) · · ·P (xk−1, xk)/π(xk)

P̂ (xk, xk−1) · · · P̂ (x1, x0) > 0, which shows that P̂ is also irreducible.
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In the previous proposition we saw that if X0 ∼ π and we reverse time, then we obtain a Markov

chain again with a different transition matrix but the same invariant distribution. So in general,

the matrices P and P̂ are not equal. In the particular case that they are equal, then we say that

X is time reversible.

Definition 9.2. We say that X with transition matrix P and invariant distribution π is time

reversible, if P̂ = P . By the definition of P̂ , we see that X is time reversible, if for all x, y we

have

π(x)P (x, y) = π(y)P (y, x).

These equations are called the detailed balance equations.

Equivalently, X is called time-reversible if for any fixed N ∈ N whenever X0 ∼ π then

(X0, . . . , XN )
d
= (XN , . . . , X0).

Remark 9.3. It is important to emphasise that in the definition of reversibility we start the chain

from π. Indeed, since we want the two vectors (X0, . . . , XN ) and (XN , . . . , X0) to have the same

distribution, this would not be possible if say X0 ∼ δx.

Remark 9.4. An intuitive way of thinking of time reversibility is by imagining watching a video

of the Markov chain started from stationarity. Then reversibility means that whether we watch the

video forwards or backwards in time, what we see is indistinguishable statistically, i.e. we cannot

tell the two movies apart.

Lemma 9.5. Suppose that µ is a distribution satisfying

µ(x)P (x, y) = µ(y)P (y, x) for all x, y.

Then µ is an invariant distribution for P .

Proof. Taking the sum over all x of both sides of the equality of the statement we get∑
x

µ(x)P (x, y) =
∑
x

µ(y)P (y, x) = µ(y),

where we used that P is a stochastic matrix. Therefore, µ = µP , which means that µ is an invariant

distribution.

Remark 9.6. From the lemma above we see that if we find a solution to the detailed balance

equations, i.e. we find a distribution µ satisfying

µ(x)P (x, y) = µ(y)P (y, x) for all x, y,

then µ is necessarily invariant for P , and in particular this implies that P is time reversible. So

when looking for an invariant distribution, we should first check whether there is a solution to the

detailed balance equations, since this is much easier than trying to solve π = πP . Of course, if there

is no solution to detailed balance, it does not mean that P does not have an invariant distribution.

All it means is that even if P has an invariant distribution, then it is not time-reversible.
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Example 9.7. Consider a biased random walk X on the cycle Zn with transition probabilities

P (i, (i+ 1) mod n) =
2

3
= 1− P (i, (i− 1) mod n), for all i ∈ {0, . . . , n− 1}.

Then πi = 1/n for all i is clearly an invariant distribution, but P is not reversible, because the

detailed balance equations are not satisfied. Thinking of the intuitive explanation of reversibility,

we see that if we start X from π, then all states are equally likely, and if we run the chain forwards

in time we will observe a rightwards drift, while if we run it backwards in time, we will observe a

leftwards drift. This means that the two are not indistinguishable.

Example 9.8. Consider a biased random walk X on {0, 1, . . . , n− 1} with transition probabilities

P (i, i+ 1) =
2

3
= 1− P (i, i− 1) for i ∈ {1, . . . , n− 2}

and P (0, 1) = 2/3 = 1 − P (0, 0) and P (n, n − 1) = 1/3 = 1 − P (n, n). Then solving the detailed

balance equations one gets that λi = 2i is an invariant measure which can be normalised, and hence

that X is reversible. The difference with the previous example, is that the invariant distribution

here is concentrated on the right side, and hence starting the chain according to π we will observe

the chain bouncing off the endpoint n− 1, and this will not be indistinguishable between forwards

or backwards in time.

Example 9.9 (Random walk on a graph). Let G = (V,E) be a finite connected graph with V

being the set of vertices and E the set of edges. A simple random walk on G is a Markov chain

with transition matrix

P (x, y) =

{
1

d(x) if (x, y) ∈ E
0 otherwise

,

where d(x) is the degree of x, i.e. the total number of edges having x as an endpoint. Since G is

connected, it follows that P is irreducible. We now look for an invariant distribution by solving the

detailed balance equations:

π(x)P (x, y) = π(y)P (y, x) for all x, y.

For (x, y) ∈ E we get

π(x) · 1

d(x)
= π(y) · 1

d(y)
.

So we see that taking ν(x) = d(x) for every x gives an invariant measure. Normalising it (since the

graph is finite), we get an invariant distribution π given by

π(x) =
d(x)∑
y∈V d(y)

=
d(x)

2|E|
for all x ∈ V.

10 Convergence to equilibrium

Recall the theorem below from Section 8.
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Theorem 10.1. Let I be a finite state space and suppose that there exists i ∈ I such that for all j

pij(n)→ πj as n→∞.

Then π = (πj : j ∈ I) is an invariant distribution.

The question we are interested in is the conditions under which the n-th power of a transition

matrix converges to the invariant distribution. Let us start with an example.

Consider a simple random walk on Zn with transition probabilities

P (i, (i+ 1) mod n) =
1

2
= P (i, (i− 1) mod n) for all i ∈ Zn.

The invariant distribution is π(i) = 1/n for all i. We see that starting from 0, the random walk

is back at 0 only at even times. So if we look at the limit P k(0, 0) as k → ∞, then it would not

converge. This leads us to the definition of the period of a state.

Definition 10.2. Let P be a transition matrix and i a state. We define the period of i to be

di = g.c.d.{n ≥ 1 : Pn(i, i) > 0}.

We say that i is aperiodic if di = 1.

Lemma 10.3. Let P be a transition matrix and i a state. Then di = 1 if and only if Pn(i, i) > 0

for all n large enough.

Proof. It is clear that if Pn(i, i) > 0 for all n sufficiently large, then di = 1.

Suppose next that di = 1 and set D(i) = {n ≥ 1 : Pn(i, i) > 0}. We first show that D(i) contains

two consecutive integers. First of all, if m,n ∈ D(i), then also m+n ∈ D(i). Suppose now that the

minimum distance between any two elements of D(i) is r ≥ 2 and let n,m ∈ D(i) with n = m+ r.

Let also k ∈ D(i) with k = `r + s with ` ∈ N and 0 < s < r, which exists since otherwise only

multiples of r would be contained in D(i) and this would contradict that g.c.d.(D(i)) = 1. Letting

a = (`+ 1)n and b = (`+ 1)m+ k we see that both a and b are contained in D(i) and

a− b = r − s ∈ (0, r)

and this contradicts the definition of r as the minimum distance between any two elements of D(i).

Therefore, D(i) contains two consecutive numbers n1, n1 + 1. Since an1 + b(n1 + 1) ∈ D(i) for

all a, b it easily follows that D(i) contains all n sufficiently large (n ≥ n21) and this completes the

proof.

Lemma 10.4. Let P be an irreducible transition matrix and let i be an aperiodic state. Then all

states are aperiodic.

Proof. Let j be another state. Since i and j communicate there exist m,n ≥ 0 such that Pn(j, i) >

0 and Pm(i, j) > 0. Then for all s ≥ 0 sufficiently large we have

P s+n+m(j, j) ≥ Pn(j, i)P s(i, i)Pm(i, j) > 0,
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which shows that P `(j, j) is positive for all ` sufficiently large, and hence j is also aperiodic.

Theorem 10.5 (Convergence to equilibrium). Suppose that P is irreducible and aperiodic and has

an invariant distribution π. Let X ∼ Markov(λ, P ), where λ is a distribution. Then for all y we

have

lim
n→∞

P(Xn = y) = π(y).

In particular, for all x, y taking λ = δx we have

lim
n→∞

Pn(x, y) = π(y).

Proof. Let (Yn)n≥0 ∼ Markov(π, P ) be independent ofX. We now consider the process ((Xn, Yn))n≥0
which is clearly a Markov chain on I × I with initial distribution λ × π and transition matrix P̃

given by

P̃ ((x1, x2), (y1, y2)) = P (x1, y1)P (x2, y2).

We first claim that P̃ is irreducible. Let (x, y) and (x′, y′) be two states in I × I. By irreducibility

of P we have that there exist m and ` such that Pm(x, x′) > 0 and P `(y, y′) > 0. By aperiodicity

of P for all n large enough we have that

Pn(x, x′) ≥ Pm(x, x′)Pn−m(x′, x′) > 0 and Pn(y, y′) ≥ P `(y, y′)Pn−`(y′, y′) > 0.

Therefore, this proves that for all n large enough P̃n((x, y), (x′, y′)) > 0, which means that P̃ is

irreducible.

Let a ∈ I and we define

T = inf{n ≥ 1 : (Xn, Yn) = (a, a)}.

Then T is a stopping time for the Markov chain (X,Y ). We now show that P(T <∞) = 1. It is

immediate to check that π̃ given by

π̃(x, y) = π(x)π(y) for all x, y

is an invariant distribution for P̃ . Theorem 8.11 now implies that P̃ is positive recurrent, which

means in particular that the state (a, a) is recurrent, and hence using also Theorem 7.9 we get

P(T <∞) = 1.

We next define a new process (Zn)n≥0 as follows

Zn =

{
Xn if n < T

Yn if n ≥ T
.

We claim that Z is Markov(λ, P ). Since T ≥ 1 by definition, for all x ∈ I we have

P(Z0 = x) = P(X0 = x) = λ(x).

We now show that Z is a Markov chain with transition matrix P . Let A = {Zn−1 = zn−1, . . . , Z0 =
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z0}. We have

P(Zn+1 = y | Zn = x,A) =P(Zn+1 = y, T > n | Zn = x,A) + P(Zn+1 = y, T ≤ n | Zn = x,A)

=P(Xn+1 = y | T > n,Zn = x,A)P(T > n | Zn = x,A)

+ P(Yn+1 = y | T ≤ n,Zn = x,A)P(T ≤ n | Zn = x,A) .

The event {T > n} is the complement of {T ≤ n} which since T is a stopping time only depends

on (X0, Y0), . . . , (Xn, Yn). Therefore, we obtain

P(Xn+1 = y | T > n,Zn = x,A)

=
∑
z

P(Xn+1 = y | T > n,Zn = x,A, Yn = z)P(Yn = z | T > n,Zn = x,A) = P (x, y).

Similarly,

P(Yn+1 = y | T ≤ n,Zn = x,A) = P(Yn+1 = y | T ≤ n, Yn = x,A) = P (x, y).

Therefore, we obtain

P(Zn+1 = y | Zn = x,A) = P (x, y),

which shows that Z ∼ Markov(λ, P ).

We can now finish the proof. Let y ∈ I. Since X and Z have the same distribution and Y is a

stationary chain we have

|P(Xn = y)− π(y)| = |P(Zn = y)− P(Yn = y)|
= |P(Xn = y, T > n) + P(Yn = y, T ≤ n)− P(Yn = y, T > n)− P(Yn = y, T ≤ n)|
= |P(Xn = y, T > n)− P(Yn = y, T > n)| ≤ P(T > n) .

Since P(T <∞) = 1, we have that P(T > n)→ 0 as n→∞ and this completes the proof.

Theorem 10.6. Suppose that P is irreducible, null-recurrent and aperiodic transition matrix. Then

for all x, y we have

Pn(x, y)→ 0 as n→∞.

Proof. This proof follows [1, Theorem 21.29].

Consider the transition matrix P̃ ((x, y), (x′, y′)) = P (x, x′)P (y, y′) as in the proof of Theorem 10.5.

As in the proof of Theorem 10.5 we get that P̃ is irreducible, since P is assumed to be irreducible

and aperiodic. If P̃ is transient, then the statement of the theorem follows, since in this case for

every (x, y) ∈ I × I we get ∑
n

P̃n((x, x), (y, y)) =
∑
n

(Pn(x, y))2 <∞,

which implies that Pn(x, y)→ 0 as n→∞.
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So we suppose now that P̃ is recurrent. Fix y ∈ I and consider the measure νy defined by

νy(x) = Ey

Ty−1∑
i=0

1(Xi = x)

 .
Then since P is irreducible and recurrent, it follows from Theorem 8.8 that νy is invariant for P .

Since P is null-recurrent, it means that νy(I) = Ey[Ty] =∞. Fix M > 0. Then there exists a finite

set A such that νy(A) > M , which follows from the fact that νy(I) = ∞. Consider now a new

measure µ defined as follows

µ(x) =
νy(x)

νy(A)
1(x ∈ A).

Then µ is a probability measure and by the invariance of νy (νy = νyP
n for all n) we have

µPn(z) =
∑
x

µ(x)Pn(x, z) ≤
∑
x

νy(x)

νy(A)
Pn(x, z) =

1

νy(A)
νyP

n(z) =
νy(z)

νy(A)
.

We now let (X,Y ) be a Markov chain started according to µ × δx and with transition matrix P̃ .

As in the proof of Theorem 10.5 we let

T = inf{n ≥ 1 : (Xn, Yn) = (x, x)}.

Then T is a finite stopping time with probability 1 (since P̃ is recurrent) and defining

Zn =

{
Xn if n < T

Yn if n ≥ T
.

we see as in Theorem 10.5 that Z is a Markov chain started according to µ and with transition

matrix P . Therefore, we obtain

P(Zn = y) = µPn(y) ≤ νy(y)

νy(A)
=

1

νy(A)
<

1

M
. (10.1)

We can now finish the proof, since

Px(Yn = y) = Px(Yn = y, n ≥ T ) + Px(Yn = y, n < T ) ≤ P(Zn = y) + P(T > n) .

Using the bound (10.1) and taking the limit as n→∞ we get

lim sup
n→∞

Px(Yn = y) ≤ 1

M
,

since T < ∞ with probability 1. Since this holds for any M > 0, the statement of the theorem

follows.
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11 Ergodic theorem

Theorem 11.1. Let P be an irreducible and positive recurrent matrix with invariant distribution π.

Suppose that X starts according to a distribution λ. Then for all x we have almost surely

1

n

n−1∑
i=0

1(Xi = x)→ π(x) as n→∞.

Proof. We write Vn(x) =
∑n−1

i=0 1(Xi = x) for the total number of visits to x up to time n− 1.

Since P is recurrent, it follows that Tx <∞ with probability 1 and by the strong Markov property

the process (XTx+n)n≥0 is Markov(δx, P ) independent of X0, . . . , XT . Since Tx < ∞, we get that

the limit limVn(x)/n is the same when the initial distribution is λ and δx. So it suffices to consider

the case when λ = δx.

We recall the definition of the successive times at which X visits x: first we set T
(0)
x = 0 and for

k ≥ 1 inductively we set

T (k+1)
x = inf{n ≥ T (k)

x + 1 : Xn = x}.

We also define the successive excursion lengths from x by setting

S(k)
x =

{
T
(k)
x − T (k−1)

x if T
(k−1)
x <∞

0 otherwise
.

By the definition of the return times we have

T (Vn(x)−1)
x ≤ n− 1

and equivalently

S(1)
x + . . .+ S(Vn(x)−1)

x ≤ n− 1.

Similarly,

T (Vn(x))
x ≥ n

and equivalently

S(1)
x + . . .+ S(Vn(x))

x ≥ n.

By the strong Markov property, the excursion lengths (S
(k)
x )k≥1 are i.i.d. with expectation given

by mx = Ex[Tx] = 1/π(x). The strong law of large numbers then asserts that almost surely

S
(1)
x + . . .+ S

(k)
x

k
→ mx as k →∞.

We now have

S(1)
x + . . .+ S(Vn(x)−1)

x ≤ n ≤ S(1)
x + . . .+ S(Vn(x))

x .
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Dividing through by Vn(x) we obtain

S
(1)
x + . . .+ S

(Vn(x)−1)
x

Vn(x)
≤ n

Vn(x)
≤ S

(1)
x + . . .+ S

(Vn(x))
x

Vn(x)
,

and hence taking the limit as n→∞ we deduce

lim
n→∞

Vn(x)

n
=

1

mx
= π(x)

and this concludes the proof.
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