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These notes are largely based on [2].

1 Definition of a Markov chain

For this course we will always take I to be a countable set and all our random variables will be
defined on the same probability space (€, F,P).

Definition 1.1. A stochastic process (X, ),>0 with values in I is called a Markov chain if for
all n > 0 and for all zg, ..., %y, Tpr1 € I we have

]P)(XnJrl = Tn+1 ‘ Xn = Tpy--- ,X[) = .’1’;0) = P(XnJrl = Tn+1 ‘ Xn = xn) .

IfP(Xp41 =y | X, =x) for all z,y € I is independent of n, then we call X a (time)-homogeneous
Markov chain. Otherwise, it is called time-inhomogeneous.

In this course we will focus on time-homogeneous Markov chains. In this case, we will work with
the transition matrix P which is defined via

P(z,y) =P(X1=y| Xo=2) forall =zyel.

The matrix P is called a stochastic matrix, because it satisfies

Z P(z,y) =1.

yel

Remark 1.2. We note that we will not always work with Markov chains indexed by N, but they
could sometimes have a finite time index set.

Definition 1.3. We say that the stochastic process (X, )n>0 with values in I is Markov(A, P) if it
has initial distribution A and transition matrix P, i.e. if for all n > 0 and for all zq, ..., 2z, Tp+1 €
we have

(i) P(XD = xo) = )‘Io and
(ii) P(Xpq1 = pt1 | Xn =2p, ..., Xo = 20) = P(zpn, Tnt1)-
We usually represent a Markov chain by its diagram corresponding to the allowed transitions. More

precisely, we place a directed edge from state = to state y if there is a positive probability of jumping
from x to y and on top of the edge we write the probability of this transition.

1—

Example 1.4. Let P = ( 3 @ 1 @ B). This is a transition matrix on 2 states that we call 1
1/2 1/2 0

and 2. Let P=|1/3 1/3 1/3|. This is a transition matrix on 3 states that we call 1, 2 and 3.
1 0 0

We represent them as in the picture below.
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2 Basic properties

The following theorem will be very useful in this course and its proof follows from the definitions
above.

Theorem 2.1. The process X is Markov(\, P) if and only if for allm > 0 and all xg,...,z, € 1
we have

P(Xo = z0,...,Xn = Tn) = AggPaozs *** Papy_1m- (2.1)
Proof. Suppose first that X is Markov(\, P) and let xg,...,z, € I. Then we have

P(X(] =20y -- ,Xn = $n) = ]P)(Xn = Tn ‘ X() =Ty -- ;Xn—l = $n_1)]P>(X0 =Ty -- aXn—l = CL‘n_l)
= P(Xn = Tn | Xn-1= l'n—l) P(XO =T0y---y Xp-1= xn—l)
= pa:nflzn]P}(XO =20,...,Xp-1 = xn—l) .

Iterating, we obtain

P(Xo =z0,...,Xp =2,) =P(Xo = xO)pxoxl © Pap_ymn = AzgProxy " Prp_1ns

which completes the proof of this direction.

The other direction, i.e. assuming that X satisfies (2.1)) it is immediate to prove that X is Markov(\, P),
since taking n = 0 gives
P(X() = xo) = )‘000

and for the Markov property we have

]P’(Xn:a:n,...,Xo :mo)
P(Xp-1=2p-1,...,X0 = 70)

AzoProz - - - P12

P(Xn:xn‘Xn_lzxn_l,...,X():xo):

= pxn—lxn
)\xopxoxl <o Pxp_oxn_q

which proves (ii) of the definition. O



Definition 2.2. Leti € I. The §;-mass at i is defined to be

aij:w:j):{l i

0 otherwise

We recall from Probability 1A the notion of independence for discrete random variables.

Definition 2.3. Let X1,...,X,, be n discrete random variables taking values in I. They are called

independent if for all z1,...,x, € I we have
P(Xy=m1,...., Xp=2,) = [[P(Xi = ;).

Suppose now that (X, )nen is a sequence of random variables with values in I. They are called

independent if for all £ > 0 and all 4y, ..., 4 distinct and all xq, ...,z we have
k
B, = o1 X, =) = T[ PO = m0).
(=1

Suppose that X = (X,,)n>0 and Y = (Y},)n>0 are two sequences of random variables taking values
in I. Then X and Y are called independent, if for all k,m € N, all 41,...,i; € Nand j1,...,jm €N
and x1,...,Tk,Y1,---,Ym € I we have

P(le =T1y.-- 7Xik = xk,le = yl,...,Y}m = ym)
= ]P)(X“ = CUl,...,Xik = CCk)IP)(Y]l = yl,...,ifjm = ym) .

The next theorem formalises the statement that for a Markov chain the past and the future are
independent given the present.

Theorem 2.4 ((Simple) Markov property). Suppose that X is Markov(\, P) with values in I
and let m € N. Then conditional on X,, = i the process (Xm+n)n>0 s Markov(d;, P) and it is
independent of Xo, ..., Xm.

Proof. We first show that conditional on X,, = i the process (X;4n)n>0 is Markov(d;, P). We
first write

P(Xm—i-n = Tmdns - Xm = xm)

P(Xotn = Tmany ey X = T | Xon = 1) = L(z, = 1) - (2.2)




By the law of total probability we get

]P)(Xm—i-n = Tm4ny--- 7Xm = mm)
= Z P(Xo =20, , Xm-1=Tm-1,Xon = Tim, - -, Xonfn = Tngn)

Z0s-+yTm—1

= E Ao Proay “Prpm_12mPrmzmi1 " PTmin—1Tmin

L0y Tm—1

= Prmrm+t1 " PrTmin—1Tm+n E )‘wopwoxl P,

ZOs-+sTm—1

P( X, = xm),

= pfmxm-kl o .p$m+n—1mm+n

where we used Theorem in the second and final equalities. Plugging this into (2.2)) we obtain

IP)()(m—l—n = Tm+n, - - - 7Xm =Tm ‘ Xm = Z) = 5iccmpa:mxm+1 o Peman—1Tmgn

which again by Theorem proves that conditional on X,, = 4, the process (X in)n>0 is
Markov (6;, P).

We now prove that conditional on X, = i, the process (X,,+n)n>0 is independent of Xo, ..., Xp,.
Let Kk > 0and z1,...,Zm—1,Tm+1,---,Tk+m € I and let m <47 < ... < 4. We will prove that

IP)(XPZ‘1 :xmﬂ,...,Xik :.’L'k+m,Xm :.CCm,...,X() = X0 | Xm:i)
:P(X“ :fEerl’---aXik :$k+m|Xm:i)P(Xm:l‘m,...,X0:l'0 | Xm:Z)

First of all the probability on the left hand side above is nonzero when x,, = i. So with x,, =i we

now have

IP)(X“ :$m+1,...,Xik :xk—&-m’Xm :J,‘m,...,XO = X0 | Xm:Z)

:P(Xil:merl""’Xik:$k+m7Xm:$ma-..7X0:$0)
A p -..p 1T .
_ Nz Jgg(m :oci) 1z P(Xi, = @1y Xip, = Tl | Xon = 1)

:P(X“ ::Eerl,...,Xik :SL‘]H_m|Xm:i)]P)(Xm:fEm,...,X0:$0‘Xm:i),

where the second and last equality follow from Theorem again. This completes the proof. [

3 Powers of the transition matrix

Suppose that X is Markov (A, P) taking values in I. We think of the rows and columns of P as
indexed by 1,...,|I| (if I is infinite, we index P by N).

We want to understand the probability that after running the Markov chain for n steps it is in a



given state z € I. Let’s calculate this

PXp=2)= Y  PXo=0,...,Xn 1=2p1,X,=2)

L0,y p—1€1

- Z AzoPzozy =+ Pon_rz = (AP")z,

TOyeesTp—1€1

where we think of the initial distribution A\ as a row vector and P" denotes the n-th power of the
transition matrix P. By convention we always take P = I.

Let m,n € N. We want to calculate P(X, 4y, =y | X;n = ). Given X,, = x we know from
Theorem that (Xpm4n)n>0 is Markov(dg, P). Hence we have

P(Xn4m =y | Xim =) = (62P")y = (P")ay.

It will become handy to use the following notation: for an event A we will write P;(A) for the
probability P(A | Xo =14). For i,j € I we will write p;;(n) for the (i, j) element of the n-th power
of P, i.e. pi]‘(n) = (Pn)w

We have thus proved the following theorem.

Theorem 3.1. Suppose that X is Markov(\, P). Then for all n,m >0 and all x,y we have

We now present some examples where we calculate the n-th power of the transition matrix.

(07

l-«
Example 3.2. Let P =
( B 1-8

> for a, 3 € [0,1]. Then exploiting P"*1 = P" . P we get

pri(n+1) = (1 —a)pi1(n) + Bpiz(n).

Also p11(n) + p12(n) = 1, which substituting above gives

prii(n+1) =B+ (1 —a—B)pi(n).

Since p11(0) = 1 we can solve this recursion and get the unique solution

L4+ -2 (1l—-a—-p0B" ifa+p>0
pn(n): a+p a+p ( ) ' '
1 ifa+8=0

General method for finding the powers of a transition matrix. Let P be a k X k stochastic
matrix. We want to calculate p11(n). In order to do so we first find the eigenvalues of P, A, ..., Ag.



If all the eigenvalues are distinct, | then P is diagonalisable, i.e. we can write

M 0 -0
P=U|: = - U
0o --. 0 M\

where U is the change of basis matrix and is invertible. Thus taking the n-th power we obtain

N0 0
Pr=U|: = .. :|UL

Therefore we can write
pu(n) = al)ff + ...+ ak/\z

and plugging in values for small n and using that p11(0) = 1 we can solve for ay,...,a. If there
are complex eigenvalues, then they always appear in conjugate pairs. Suppose that there are only
two complex eigenvalues, A\x_1 and ;. We write them in trigonometric form, i.e.

Moot =re?? =r(cosf+isind) and Ay = A_y = re ¥ = r(cosf —isin0).

Since p11(n) is a real number, we can safely write the general expression for pi1(n) as follows

k—2
pii(n) = Z a;i\i + ag_17" cos(nb) + apr" sin(nd).
i=1
Then as before we plug in small values of n to solve for the coefficients a1, ..., ag.

’If the eigenvalues are not all distinct, ‘ then if eigenvalue A is repeated once, we include the term

(an 4 b)A™ in the sum above. This follows from the Jordan normal form of P. For higher multi-
plicities we include the analogous terms.

0 1 0
Example 3.3. Let P=| 0 1/2 1/2|. We want to calculate p1(n). Following the discussion
/2 0 1/2

above we find the eigenvalues that are 1,7/2, —i/2. Since

% = %(cos(w/Q) + isin(7/2)),

we can write

pri(n) = a+b (;)n cos(n/2) + ¢ <;)n sin(n7/2).

Since p11(0) = 1, p11(1) = 0 and p;1(2) = 0 we can write down the system of equations that a, b
and c satisfy to get

pnm%:;+<;Y(§mdmdm—§$Mmﬂ%).



4 Communicating classes
We want to define a notion of connectivity for a Markov chain analogous to the definition of
connectivity for a graph.

Definition 4.1. Let X be a Markov chain with transition matrix P and values in I. For two states
x and y in I we say that x leads to y and write it x — y if

P, (X, =y for some n > 0) > 0.

We say that x communicates with y if + — y and y — = and we denote it by x < y.

eod

We now give some equivalent conditions for two states to ecemmunicate.

Theorem 4.2. Let x and y be two states. Then the following are equivalent:

(1) z—y;
(2) there exists a sequence of states xo = x, 21, ..., T =y such that P(xg, 1) -+ P(xg_1,x) > 0;

(3) there exists n > 0 such that pyy(n) > 0.

Proof. (1)<(3): The event {X,, = y for some n > 0} is equal to
{X,, =y for some n > 0} = Up>o{ Xy, = y}.
So if P,(X,, =y for some n > 0) > 0, then there exists some n > 0 such that P,(X,, =y) > 0.
Clearly, if P, (X, =y) > 0, then z — y.
(2)<(3): Since pay(n) is the (x,y) element of P we have

Pay(n) = Z P(z,21) - P(xn-1,2n).

LlyeeesTn—1
Therefore the equivalence of (2) and (3) follows. O

Corollary 4.3. The relation <> defines an equivalence relation on 1.

Proof. We only need to check that for every z,y,z € I we have ¢ <+ x and if z < y and y ¢ z,
then z < 2.

By (3) for n = 0 we see that = <+ x. Using (2) we get the transitivity property. O

Definition 4.4. The equivalence classes induced by <> on I are called communicating classes.
We say that a class C' is closed if whenever x € C' and x — y, then y € C.

A transition matrix P is called irreducible if it has a single communicating class, i.e. if for all
xz,y € I we have x < y.

A state z is called absorbing if {z} is a closed class. In other words, the Markov chain starting
from z always remains at x.



5 Hitting times

Suppose that X is a Markov chain with transition matrix P with values in I and let A C I.

Definition 5.1. We define T4 to be the first hitting time of A, i.e. T4 is a random variable
Ty:Q2—{0,1,...} U{co} given by

Ty(w) =inf{n >0: X, (w) € A}.

We use the convention that the infimum of the empty set is equal to co.

The hitting probability of A is defined to be the function A4 : I — [0,1] given by

BA

(2

= ]P)l(TA < OO) .

The mean hitting time of A is defined to be the function k4 : I — R, U {oc} given by

kA = Ei[TA] = ZNPZ‘(TA =n)+ 00 -Pi(Ty = o0).

7
n=0

In this section we are going to show that the vectors h and k“ are the minimal nonnegative
solutions to certain systems of linear equations. Before stating the theorems, we will look at an

example to gain some intuition.
Example 5.2. Let X be the Markov chain with the following diagram:

1/&
1/1

1 2 3 &

P

1
N

Let A = {4}. What is h4'?

Starting from 2 after one step, the Markov chain could be at 1 with probability 1/2 or at 3 with
probability 1/2. If it hits 1, then it gets absorbed there. If instead it hits 3, then we can forget
where we started from by the Markov property (we will make this rigorous in the next theorem)
and start afresh from 3. So we would have

1
2
1 1 1
hg = §h‘2“ + 5Pa(Ta < 00) = 5}15‘ +

1 1
hi = 5P1(Ta < 00) + §h§ =

1
2
We can then solve the system to get h{ =1 /3.

We next set B = {1,4} and want to calculate kQB. Starting from 2 we make one step and either get
absorbed at 1 or we go to 3. Then by the Markov property from 3 we start afresh. So similarly to



above we have
B ]‘ B

1
/<:§:1+§k:§.

Solving this system we obtain kF = 2.

Theorem 5.3. Let A C I. The vector of hitting probabilities (hi* : i € I) solves the following

system of linear equations

hA =

7

{1 ifie A
N | . :
> P(i,j)hi  otherwise

Moreover, (h")icr is the minimal non-negative solution (th >0 for all i) to this system of equa-

7
tions, in the sense that if (x;);er is another non-negative solution, then h? <a; foralliel.

Proof. We start by proving that (h);c; solves the system of linear equations. Clearly if i € A,

(3
then h* = 1. So suppose now that i ¢ A. We can write the event {T4 < oo} as a disjoint countable

union of events as follows

{Th < o0} ={Xo€ A} U G{XogéA,...,Xn_lgéA,XneA}.

n=1

So taking probabilities of both sides and using the countable additivity property of probability
measures when the sets are disjoint we get

Pi(Ta<oo)=> Pi(Xo¢ A, ... . Xn1¢AX,€A)
n=1
n=1

:ZZP(X0¢A,...,Xn_1¢A,Xn€A,X1:j]XO:z‘)
n=1 j

=Y P, ))P(X1 €A| Xo=i, X1 =)+ > > Pl j)P(X1 ¢ A,... . Xn1 ¢ A X, €A Xo=i,X1 =)
J

n=2 j

By the definition of a Markov chain we have for every j € 1
P(Xl EA|X0:i,X1 :j):P(X1€A’X1 :]):P(XOEA’X[)ZJ)
By the simple Markov property for every n > 2 and j € I we have

P(Xl¢A,...,Xn_1§§A,Xn€A|X0:Z',X1 :j):P(Xl¢A,...,Xn_1¢A,Xn€A’X1 :])
:P(X0¢A,...,XH,Q¢A,XR71€A|X0:j).

10



Substituting these equalities above we obtain

hit = P(Ty < o0) = ZPZ]( (Xo € A) —|—Z]P’ (Xo ¢ A,.. n1¢A,Xn6A)>

n=1

—ZP” ( (T4 = 0) +Z[P TA_n>:ZP(i,j)hJ

n=1

and this completes the proof of the first part of the theorem.

We next turn to prove the minimality property of (hi')ic;. Let (2;)ic; be another non-negative
solution of the linear system. We will prove that for all ¢ € I we have h{‘ < z;. For i € A this
clearly holds, so we assume that i ¢ A. Then we have

zi =Y P@i,j)+ Y P(ij)z;
jeA jgA

Substituting (7;) ;¢4 above from the linear equations we obtain

2= Plj) + Y P.j) (Z PGk + 3 P, km) .

jeA jgA keA k¢ A

Iterating we get

= > P(i,)+ > Y, Pli,j)P(da) + .- + > P(i,j1) -+ P(jn-1,Jn)
j1€A j1¢Aj2€A jléA,...,jn,1¢A,jn€A
+ > P(i, 1)+ P(jn-1,Jn);,
jléAv"ﬂjn—leA?j’ﬂ%A
:Pl(Xl S A) —|—]P)Z(X1 ¢ A Xy € A) + ... —|—]P)Z(X1 ¢ A X ¢ A X, € A)

+ > P(i,j1) -+ P(jn-1,Jn)Tj,
J1EA,..in—1¢Ajn¢EA
=Py(Ta <n)+ > P(i,j1) -+ P(jn-1,jn)@j,-

jl¢A7“"jn*1¢A7jn¢A
Since x; > 0 for all j we get that for all n € N
x; > Pi(Tqg <n).

Taking the limit as n — oo and using that {T4 < n} are increasing events with U,{T4 < n} =
{T4 < oo} we obtain
x; > lim Py(Ty < n) = hi

n—o0

and this finishes the proof. O

Going back to Example we want to find h‘24 using the theorem above. We then have hf = 1

11



and

1 1
A A A
h2 — ihl + 5}13
1 1
hy = Zhy + ~hi = hy + =
2 2
Solving the system we get
2 1
hy = Zhit 4 =
2 =3h t3
1 2
hy = —hit+ .
3 =3 t3

So we see that we cannot determine the value of hf‘ simply from these equations. But using the
minimality condition we can deduce that ht = 0. Of course from the formulation of the problem
it was clear that hf = 0, since there is no route from 1 to 4. There could be more complicated
examples though (e.g. for infinite state spaces) where it is not possible to determine the values of
some components other than using the minimality condition.

Example 5.4. We consider a simple random walk on Z, with transition probabilities
P(0,1)=1, P(i,i+1)=p and P(i,i—1)=gq for i>1

with p+¢ =1 and p,q € (0,1). Let h; = P;(Tp < oo) for i € N. Then hy = 1 and for every i > 1
we have
hi = phit1 + qhi—1.

If p # q, then the general solution will be of the form
_ AN
hi—a—i-b() for i > 1.
p

Since h has to be non-negative and minimal, it follows that if p < ¢, then a = 1 and b = 0, i.e.
h; =1 for all # > 1. On the other hand, if ¢ < p, then since hg = 1, we get a = 0 and b = 1, which
means that h; = (¢/p)°.

In the symmetric case, i.e. when p = ¢, then the general solution is of the form
h; = a + bi.

Non-negativity and minimality impose the conditions ¢ = 1 and b = 0, which means that h; = 1
for all i.

Example 5.5 (Birth and death chain). A birth and death chain is a Markov chain on N with
transition probabilities

P(0,0)=1,P(i,i+1)=p; and P(i,i—1)=¢g;=1—p; fori>1,

with g;, p; € (0,1). This is a Markov chain that models the evolution of the population size, where
we assume that at every step if the current population size is 7, then there is probability p; of having
a birth and probability ¢; of having a death. We are interested in the probability that O is hit,

12



which in other words means that the population goes extinct. To this end we set h; = P;(Th < 00).
Then hg =1 and

hi = pihiy1 + qihi—1.

Rearranging the above equality we get
pi(hit1 — hi) = qi(hi — hi—1).

Setting u; = h; — h;—1 for i > 1 we get from the above equality that

7
di 45
Ui+l = —U; = ... = U] * —.
oo Hpj

)

Note that u; = h; — 1, and hence
i i
hi:ZUj—i-l:l—(l—hl)-
j=1 =2

= di
(;;[1 Pk) + (1 = hy).

Writing

%

"
vi=][2 and 1o =1,

j=1Pi

we have
i—1
hi=1—(1—h)Y v
=0

and requiring h to be a non-negative solution we obtain

1
- < =—
Z;io Vi
and to achieve minimality we need to take
1
h=1— —=—.
Z;io Vi

So if 37725 v; < 00, then we get
oo
Zj:i Vi

h = ==
' Zggio%'

while if 322, = oo, then
h; =1 forall ¢>1.

Recall that k#* = E;[T4] is the mean hitting time of the set A.

13



Theorem 5.6. The vector (k{1);c; is the minimal non-negative solution to the linear system

A 0 ifi €A
ki == .
143 5¢a P(i,j)k:f otherwise

Proof. It is clear that k* = 0 for i € A, so from now on we assume that i ¢ A.

Using the simple Markov property as in the proof of Theorem we then have

=) Pi(Tu>n)=> nP(Xo¢ A X1 ¢A,... . Xy¢A|Xo=1)
n=0

:1+ZP(X1géA,...,XngéA\XO:i)

—1+ZZsz (X1 ¢ A,..., X, ¢ A| X| =j, Xog=1)

nlj

_1+ZZP23 (Xo¢ A,.... X, 1 ¢ A)
7’L1j

—1+ZZPZJ TA>n)—1+ZPZJ —1+ZP13
n=0 j J JgEA

where the last equality follows since k;-“ =0 for j € A.

Next we prove the minimality property of (k{*);cr. Let (2;)ier be another non-negative solution to
the system of linear equations. Then z; = 0 for ¢ € A and iterating the linear equations we get

zi=1+ Y P(i,j)+ > Y P, j)PGLje) +...+ Y. Pli,j1)- Plin-1,jn)

NgA J1¢A ja¢ A JEA,..Jn¢A

+ Z P(i,j1) s P(jn7jn+1)xjn+1'
EAJn A gnr1€A

Since x; > 0 for all j, we get

w21+ Y P, i)+ >, > Pli,j)PGudi)+-.+ > Pli,j1)- P(in-1,in)

J1gA J1gAj2¢A TEA,. . JngA
=14P(Ta>1)+...4P(Ta>n)=P;(Ta >0)+...+ Pi(T4g >n),

which means that for all n € N we have

x; > ZPZ'(TA > k) .
k=0

Sending n — co we immediately then see that x; > klA and this completes the proof. ]

14



6 Strong Markov property

For a Markov chain we have proved that if we condition on {X,,, = i}, where m € N, then the future
of the process is a Markov chain starting from ¢ with transition matrix P and it is independent of
Xo,...,Xm (see Theorem [2.4). The question is whether we could replace the deterministic time
m by a random time and still preserve the Markov property. It is quite clear that not any random
time could work, simply because it could contain some information about the future of the process,
in which case it would ruin the Markov property. It turns out that we can extend Theorem [2.4] to
the case of a random time which is a stopping time as we now define.

Definition 6.1. A stopping time 7' is a random variable T : Q@ — {0,1,...} U {co} with the
property that for every n € N the event {T" = n} only depends on Xj,...,X,.

Let us now look at some examples.

Hitting times of sets are stopping times Let A C I and let T4 = inf{n > 0: X,, € A}. Then
T4 is a stopping time, since for all n we have

(Ta=n}={Xod A,...,Xu1¢ A X, €A

Last exit times are NOT stopping times Let A C I and let Ly = sup{n > 0: X,, € A}. Then
L 4 is not a stopping time, since for any n we have that the event {L4 = n} depends on (X,4n)m>0-

Theorem 6.2 (Strong Markov property). Let X be Markov(\, P) and let T be a stopping time.
Then conditional on T < oo and Xp = i, we have that (X7in)n>0 is Markov(d;, P) and it is
independent of Xo, ..., Xr.

Proof is non-examinable
Proof. We need to show that for every n > 0, all zq,...,z, € I and every w € U,I* we have

P(XT:xo,...,XTJrnZiL‘n,(Xo,...,XT) :w|T<OO,XT:i)
:5mOP(xo,x1)‘--P(acn_l,a?n) 'P((Xo,...,XT) =w ‘ T < OO,XT:i).

Suppose that w has length k. Then

P(XTII'O,...,XT_HZ:ZL‘n,(Xo,...,XT):’LU’T<OO,XT:Z')
_ IP’(Xk:xg,...,XHn:xn,(Xo,...,Xk):w,T:k,Xk:z')
IP(T<OO,XT=i)

Since the event {T' = k} only depends on Xjy,..., X we have by the simple Markov property,
Theorem

P(X =z0,..., Xktn = Tn, (Xo,..., Xg) =w, T =k, Xy, =1)
:P(Xk:xo,...,Xk+n:xn ‘ (Xo,...,Xk) :w,Xk:z,T:k)IP’((XO,,Xk):w,Xk:z,T:k)
= 0izo P(x0,21) - - - P(p—1,2n)P((Xo,...,Xp) =w, Xi =4, T = k).
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Proof is non-examinable


Therefore, we deduce

]P)(XT:xo,...,XT+n:.Cvn,(Xo,...,XT) :w|T<OO,XT:i)

P((Xo,...,Xp) = w, Xs =i, T = k)
P(T < oo, X1 = i)

= Oizo P(x0,21) -+ - P(zp—1,20)P((Xo0y...,X7) =w | X7 =14,T < 0),

- 52'900P(3707x1) T P(Jf'n—lufﬁn)

which completes the proof the theorem. ]

Example 6.3. We now want to apply the strong Markov property to derive in a slightly different
way the hitting probabilities of 0 for a simple random walk on N with transition probabilities

P(0,1)=1,P(>i,i—1)=1/2 and P(i,i+1)=1/2 fori> 1.

Let h; = P;(Ty < 00). Then writing the hitting equations as before we get

1 1
h1 ==+ —hs.
1 2-1-22

Now notice that in order to hit 0 starting from 2 we first need to hit 1 and then 0. We also notice
that by the strong Markov property, under Py conditional on 77 < oo we can express Ty = 11 + T,
where Tj is independent of 77 and has the same distribution as Ty under P;. Therefore we have

Po(Tpy < 00) = Po(Th < 00, T < 00) = IP’2<T1 + Ty < 00 ‘ T, < oo> Py (T} < 00)
=P, (Tp < o0) Po(T < 00) = hi.

Substituting this above we deduce

11
hi=—+-h=h =1
1 2+21:>1

7 Transience and recurrence

Let X be a Markov chain with state space I and transition matrix P.

Definition 7.1. A state 7 € I is called recurrent if
P;(X,, = ¢ for infinitely many n) = 1.
A state 7 € I is called transient if

P;(X,, = ¢ for infinitely many n) = 0.

Later in this section we are going to establish a dichotomy for transience and recurrence, i.e. we
will show that every state is either transient or recurrent.

Definition 7.2. We define the successive times at which X visits 7 as follows: first we set Ti(o) =0
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and for k£ > 1 inductively we set

T*D —inf{n >17M +1: X, =i},
We usually call T; = Ti(l) the first return time to . We also define the successive excursion lengths
from ¢ by setting

o _ {Ti(k) B S I

' 0 otherwise

We set f; = P;(T; < oo) and write V; for the total number of visits to i, i.e.

Vi =
I

1(X, =1).

00
=0
Lemma 7.3. For every r € N we have
Pi(Vi>r)=fl.
Proof. We prove the lemma by induction. For » = 1 we have
Pi(Vi > 1) =Py(T; < 00) = f;.
Suppose the claim holds for all » < k. We will prove it also holds for » = k£ + 1. Indeed, we have
Pi(V; > k+ 1) = P; (T«(kﬂ) < oo) =P, (T.(k) < 00, THHD < oo)

3 (2 K

=P <Ti(k+1) < 00 ‘ Ti(k) < oo> P; (Ti(k) < oo) .

We now use the strong Markov property applied to the stopping time Ti(k). Conditional on T®

(]
00, since at this time the Markov chain is at ¢, it follows that TZ-(kH)

<
has the same distribution as T;
under P;. Therefore we get

P;(V; > k+1) =P (Ti(l) < Oo) P, (Ti(k) < oo) = i
and this finishes the proof. O

We now present a criterion for a state to be either recurrent or transient.

Theorem 7.4. Let X be a Markov chain and i € I. Then we have the following dichotomy:
(a) If Py(T; < 00) =1, then i is recurrent and ), pii(n) = oc.

(b) If P;(T; < 00) < 1, then i is transient and ), psi(n) < oo.

Proof. First we write the expectation of V; starting from ¢ as follows
oo oo
E;[V;] = E; [Z 1(X, = i)] => pu(n) (7.1)
n=0 n=0
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(a) In this case we have f; = 1, and hence from Lemma we get that V; = co with probability 1,
which means that i is recurrent. Moreover, E;[V;] = co, which implies using (7.1) that

szz(n) =0
n=0

(b) If f; < 1, then see from Lemmal7.3|that V; is a geometric random variable of mean 1/(1— f;) <
00, which implies that V; is finite with probability 1, i.e. that 7 is transient and moreover E;[V;] < oo,

[ee]
Zp“(n) < 00
n=0

This completes the proof. O

which means

Theorem 7.5. Let z,y € I be two states that communicate, i.e. x <+ y. Then either they are both
recurrent or both transient.

Proof. Suppose that x is recurrent. Then

Zpac:c(n) =0
n=0
Since x <> y there exist m, ¢ € N such that pg,(m) > 0 and py,(¢) > 0. So then we have
Zpyy (n) 2 Zpyy(n +m+ 6) > Zpy:c (E)pm: (n)pxy(m) = pyx pxy pra: = 00,

which means that y is also recurrent and finishes the proof. O
Corollary 7.6. Either all states in a communicating class are transient or they are all recurrent.

Theorem 7.7. If C is a recurrent communicating class, then it must be closed.

RAsx»y3

Proof. Suppose C is not closed. Then there must exist z € C' and y ¢ C such that x — y. Let m
be such that pg,(m) > 0. Then since once X hits y it cannot come back to zwe get

O-S 3¢ C
P, (Vy < o0) > Pu (X, =y) >0,
implying that x is transient, which is a contradiction. O

Theorem 7.8. A finite closed class is recurrent.

Proof. Let C be a finite closed communicating class and let x € C. Then by the pigeonhole
principle there exists y € C such that

P, (X, = y for infinitely many n) > 0.
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Since x « y, there exists m > 0 such that P,(X,, =) > 0. Therefore by the simple Markov
property we get

P, (X,, =y for infinitely many n) > P,(X,, = z, X,, = y for infinitely many n > m)
= Py (X, = y for infinitely many n > m | X,, = z) Py (X,, = x)
= P,(X,, =y for infinitely many n)P,(X,, = z) > 0.

This now implies from Theorem [7.4] that y is recurrent, and hence by Theorem we conclude
that C is a recurrent class. O

Theorem 7.9. Let P be irreducible and recurrent. Then for all x,y we have
P (Ty < o0) = 1.

Proof. Since P is irreducible, there exists m > 0 such that p,,(m) > 0. Also since y is recurrent
and by the simple Markov property, we get

1 =P, (X,, =y for infinitely many n) = Z Py (X, = 2, X, = y for infinitely many n > m)
z
= Zpyz(m)IP’z(Xn = y for infinitely many n).
z

Now notice that by the strong Markov property at time T}, we get
P, (X, = y for infinitely many n) = P, (T, < oo) Py(X,, = y for infinitely many n) = P, (T, < c0) .
Substituting this above yields

1 =Py (X,, =y for infinitely many n) = Zpyz(m)IP’Z(Ty < 00).
z
Since py.(m) > 0 and ), py.(m) = 1, we get from the above equality that

P, (Ty < o0) =1

and this concludes the proof. O

7.1 Random walks on Z¢

In this section we are going to show that simple random walk on Z and Z? is recurrent, while it is
transient in Z% for d > 3.

Definition 7.10. A simple random walk in Z¢ is a Markov chain that has transition probabilities
1 d
P(x,m—&—ei):P(x,x—ei):ﬁ for all v € Z°,

where (€;)i<q is the standard basis of RA.
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Theorem 7.11 (Polya). Simple random walk in Z¢ is recurrent when d < 2 and transient for
d>3.

Random walk on Z

Let X be a simple symmetric random walk on Z, i.e. it has transition probabilities
. 1
P(z,x —1i) :P(a:,a:—i—l):i Vel
We will prove that it is recurrent by showing that

Zpoo(”) = 0.

First of all we notice that poo(n) is non-zero when n is even. So let’s calculate Py(X2, = 0). In
order to be at 0 at time 2n when the walk starts from 0, it needs to make n steps to the right and
n steps to the left. There are (2:) ways to pick the steps that will be to the right and then the
remaining ones will be to the left. Each choice of right /left steps has probability 1/2%"

on\ [(1\*" (2n)! 1

Using Stirling’s formula, i.e. that as n — oo

of occurring.
Therefore we get

nl~V2rn-e " n",
we get,
Py(Xa, = 0) !
0 2n — \/ﬁ

Therefore, for ng sufficiently large and n > ng we get

Poo(2n) >

and hence

> poo(2n) = > W Aakat

n>n
which implies that the walk is recurrent.
Simple asymmetric random walk on Z
Suppose that X is a simple random walk on Z with transition probabilities

P(i,i+1)=p and P(i,i—1)=gq

with p+ ¢ =1 and p,q € (0,1). Then the same reasoning as above gives

poo(2n) = (%ﬁ:)pnq" ~ %,
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where in the last step we used again Stirling’s formula as n — oco. If p # ¢, then 4pq < 1, and
hence

> “poo(2n) < ) 2(4pg)" < o0,

n>ng

thus proving transience.
Random walk on 72

We will now prove recurrence of simple random walk on Z2. We will use a very nice trick that
works in two dimensions by projecting the walk on the two diagonal lines y = x and y = —z. More
precisely, let X,, be the simple random walk in Z?and let f be the transformation

Then we write f(X,,) as f(X,,) = (X7, X,)).

The reason we project on the two diagonals is because this results into two independent simple
random walks in Z/+/2 as we will explain now.

Lemma 7.12. Both (X;}) and (X)) are simple random walks in 7./\/2 and they are independent.

Proof. We can write X,, = Y ; & where (;); are i.i.d. random variables distributed as follows

P& = (1,0)) = P(&1 = (=1,0)) =P(& = (0,1)) =P(& = (0, -1)) = .
Then writing & = (€1,€7), we have X = S (€] +€2)/vZ and X; = X1 (6} ~€2)/V/Z. One can
then check that both X, and X, are simple random walks in Z/ V2. To prove the independence,

since the (¢;) are independent, it is enough to show that & + 512 is independent of £} — 51-2. This
follows from calculating all possible probabilities, i.e.

1
P& +& =16 -&=-1)=P&=(0,1)) = =P(§ +& =0)P(¢§ - & =-1)
and similarly for all the other possible events. O

We now notice that X,, = 0 if and only if both X, = 0 and X,; = 0. Using the independence we
proved above we obtain

_ A
Po(X2n = 0) = Py (X5, = 0) Po(X5, =0) ~ -
using the estimates we established in the 1-dimensional case. Therefore, we conclude

> poo(2n) = oo,

showing that the random walk in Z? is recurrent.

Simple random walk in Z3
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As in the previous cases, X can be back at 0 only at even times. In order for X to be at 0 at time
2n it must make ¢ steps up, i steps down, j steps north and j south and k east and k west for some
1,7,k > 0 with ¢4+ j + %k = n. There are (Hﬁlkk) ways of choosing which steps will be done in each
direction. So we get

Poolzn) = L. = = - L. = .
Pt 1,1,7,7, k, k 6 n 2 i N 3

i+j+k=n i+j+k=n

1 n
> (i) () =
i,j,k>0 (2R

i+j+k=n

We now see that

since the sum corresponds to the total probability of all the ways of placing n balls into 3 boxes
uniformly at random. Let us now take n = 3m. Then by direct comparison, it is not hard to see

that
n n
< .
<z’,j, k:) - (m,m,m)
(2m) < an\ (1\*" n 1n\" ¢
Pootan) = n 2 m,m,m 3 n3/2’

where C is a positive constant and this asymptotic follows again from Stirling’s formula. We thus

Therefore, we deduce

get
> " poo(6m) < oo.
m

Using that poo(6m) > (1/6)?poo(6m — 2) and poo(6m) > (1/6)*peo(6m — 4) we get that

> poo(2n) < o0

and this concludes the proof that simple random walk on Z3 is transient.

8 Invariant distribution

Let I be a discrete set. Recall that A = (\; : i € I) is called a (probability) distribution if A; > 0
for all i and >, ; A; = 1.

Before defining the notion of an invariant distribution (or otherwise called equilibrium or stationary)
let us start with an example.

Let us consider a 2 state Markov chain with states called 1 and 2 and let

P@%:P@U:P@D:P@@:é

As n — oo where do we expect the chain to be? Will state 1 be more likely than state 27 Clearly,
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by symmetry, we expect both of them to be equally likely. So we expect, p11(n) — 1/2 and
p12(n) — 1/2 as n — oo and similarly starting from 2.

We can think of (1/2,1/2) as the equilibrium distribution of the Markov chain, since running it for
a long time we expect it to equilibrate at (1/2,1/2).

Suppose next that we want to define a probability distribution 7 on the state space I, so that if
Xo ~ 7, then X,, ~ 7 for all n. Let’s see what m should satisfy in this case. Since Xg ~ m, we get

P(X1 = j) = > P(Xo =i, X1 = j) ZP P(X1=j| Xo=i) =) m(i)P(i,]).

i

So if we want X,, ~ 7 for all n, it follows that

or in matrix form

where 7 is a row vector.

Definition 8.1. A probability distribution 7 = (m; : ¢ € I) is called an invariant /equilibrium/stationary
distribution for the Markov chain with transition matrix P if 7 = 7 P.

Theorem 8.2. Let X be a Markov chain with transition matrix P and invariant distribution .
If Xo ~ 7, then X,, ~ 7 for all n.

Proof. We will prove it by induction. For n = 0 it holds, since Xy ~ m. Suppose it holds for n,
then

P(Xn1=3) = ZP(Xn =i, Xpt1=7) = ZP(Xn =) P(i,5) = Zm-P(z‘J) =

where for the penultimate equality we used the induction hypothesis and for the last one we used
that m = 7 P. ]

Theorem 8.3. Let I be a finite state space and suppose that there exists i € I such that for all j
pij(n) = m;  asn — oo.
Then m = (m; : j € I) is an invariant distribution.

Proof. We first show that m is a probability distribution. Indeed, we have

> omi= Z lim p;;(n) = lim > pij(n)

JjeI Jjel Jjel

where we used that [ is a finite set, so we can safely interchange the sum and the limit.
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We next prove that m = nP. Let j € I. we have

n—oo

mj = lim pij(n) = lim > pir(n—1)P(k,j) = anijgopik(” —1)P(k,§) =Y mP(k, ),
k k k

where again we were able to interchange sum and limit because I is finite. O

Remark 8.4. Note that the assumption that [ is finite is essential in the theorem above. Take for
instance the simple symmetric random walk on Z as we studied previously. Then we showed that

poo(n) ~ — asn — oo,

vn

where C'is a positive constant. It is not hard to show that also pg,(n) — 0 as n — oo for all z. So
in this case, the limit is not a probability distribution.

Example 8.5. Let us consider again the two state Markov chain with

P 1/2 1/2 .
1/2 1/2
By calculating the eigenvalues or otherwise we get

1 1
p1i(n) — B and pia(n) — 5 N

So m = (1/2,1/2) is an invariant distribution. Solving m = 7P we also get m = (1/2,1/2).

We now want to understand whether a transition matrix has an invariant distribution and whether
this is unique. We will only talk about irreducible Markov chains, since if the state space consists
of several communicating classes, then the invariant distribution might not be unique.

P is a stochastic matrix, so 1 is an eigenvalue.
Remark 8.6. Note that for an irreducible transition matrix P on a finite state space I one can

deduce the existence of an invariant distribution using the Perron-Frobenius theorem, a result in
linear algebra. The following theorem works both in the finite and infinite setting using probabilistic
arguments.

We next define a measure in terms of the numbers of visits to a vertex during an excursion from
another vertex. Afterwards we will show that when P is irreducible and recurrent, this is always
an invariant measure.

Definition 8.7. Let k € I. Recall that T}, is the first return time to k, i.e.
Tr =inf{n > 1: X,, = k}.

We define v (i) to be the expected number of visits to ¢ during an excursion from k, i.e.

T—1
d X, = i)] .

n=0

vi(i) = Eyg,
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P is a stochastic matrix, so 1 is an eigenvalue.


Theorem 8.8. Suppose that P is irreducible and recurrent. Then vy is an invariant measure,
i.e. vy = VP, satisfying 0 < v(i) < oo and vi(k) = 1.

Non examinable?
Proof. By the definition of vy it is clear that vk (k) = 1. We next prove that vy is invariant.

First we note that since the chain is recurrent, then 7}, < oo with probability 1 and since X7, =1
by definition of T}, we obtain

vi(i) = Eg

Ty ') o)
d1(X, = i)] = Ey, [Z In<Th) - L(Xp=i)| =Y Pp(X,=i,n<Tg). (8.1)
n=1

n=1 n=1
By the law of total probability we get for all n > 1

Pe(Xn=i,n<Tp) =Y Pp(Xp=i,Xp1=j,n<T}).
j

We now claim that the event {7} > n} only depends on Xy,..., X,_1. Indeed, {T} > n} is the
complement of {7}, < n — 1} which is the union

{Tn<n-1}= |J {Th =1}
<n—1
Using that T}, is a stopping time, each of the events of the union only depends on X, ..., X, and

hence the claim follows. Therefore, we get

Pk(Xn = i,Xn_l = j,n S Tk) = Pk(Xn =1 ‘ Xn—l = j,n S TJ)Pk(Xn_l = j,n S Tk)
= P, )P(Xn—1 = j,n < Tj),

where for the second equality we used the Markov property. Plugging this back into (8.1)) we deduce

ve(i) =D D P iPE(Xn1 = Gin <Ti) = > P(,i) Y Bi[1(Xp1 = j), L(n < Ty)]
n=1

n=1 jeI jel

Tp—1
=Y P(j,i)Ey [Z 1(X, = j)] = (uP)i,
jel n=0

thus proving that vy is an invariant measure.

To show that 0 < vg(i) < oo, let m,n be such that pg;(n) > 0 and p;p(m) > 0 (which exist by
irreducibility). Then using the invariance of v} we get

vk(i) > vg(k)pri(n) = pri(n) > 0,
since v (k) = 1. To prove the finiteness, we use the invariance of v at k, i.e.

1
pik(m)

1= w(k) = pie(m)vi(i) = v (i) < <00

and this concludes the proof. ]
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Non examinable?


Non examinable
Theorem 8.9. Suppose that P is an irreducible transition matriz and let A be an invariant measure

satisfying \p = 1. Then A > vg.

If P is also recurrent, then A = vy.

Proof. Since A is invariant we get

)‘i = P(k},l) + Z AJP(]J Z) = P(k,l) + Z P(kajl)P(jlrz) + Z P(jQyjl)P(jhi))‘jz

J1#k J1#k Ji.g2#k
= P(k,i)+ Y P(k,j)P(r, i)+ + > P(kju1) - P(j2, 1) P(j1, )
J1#£k Jlsensin—17k
+ 3 XuP@nsdna1) - Pli2. )P, ).
jlv"'vjn#k

Since A is a measure, it follows that A, > 0 for all z, and hence for all i # k

Xi > P(k,i)+ Y Pk, j))P(ji,i)+---+ > P(kyjn-1) - P2, j1) P(j1,4)
17k J1yedn—17k
n

= Pe(Xe=14,Tp > 0) = > Pp(Xy=1,Ti > ) = v (i),
=1 =1

thus proving that \; > v (i) for all 7.

Suppose next that P is also recurrent. Then v is an invariant measure by Theorem [8:8] So A\ — v
is an invariant measure, since A\ > vg. It also satisfies that A\ — v, (k) = 0. By irreducibility there
exists m > 0 such that p;x(m) > 0. Using the invariance property we get

0= X, —vi(k) =Dy = vi(i)pjr(m) = (N = w(0)pir(m),
j

which implies that A; = v (i) and this finishes the proof. O

So far we have established that if P is irreducible and recurrent, then it has a unique invariant
measure up to multiplicative constants. The question is when we can get an invariant distribution
out of an invariant measure. In order to get a distribution, the total mass of the invariant measure
has to be finite. So let us fix k € I and consider the invariant measure v;. Then we have

Ty—1 T,—1
i) =D Ex| > L Xp=1)| =Ep| Y Y L(X, =1i)| =Ex[Ti].
el i€l n=0 n=0 i€l

We thus see that in order to be able to normalise and get an invariant distribution, we require
Er[Tx] < co. This leads us to the following definition.

Definition 8.10. Let ¢ € I be a recurrent state i.e. if 7; = inf{n > 1: X,, = i} is the first return
time to ¢, then P;(7; < co) = 1. We call i positive recurrent if 7; also has finite expectation, i.e.
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Non examinable


If E;[T;] = oo, then i is called null recurrent.

Theorem 8.11. Suppose that P is an irreducible transition matriz. Then the following are equiv-
alent:

(i) every state is positive recurrent;
(ii) some state is positive recurrent;
(iii) P has an invariant distribution .

If any of the above holds, then w; = for every 1.

1
E|T;]

Proof. Obviously (i) implies (ii). Suppose now that (ii) holds. We will prove that (iii) holds too.
Suppose that k is the positive recurrent state and consider the invariant measure v. Then

Ty, —1
> (i) => Ey [Z 1(X, =1i)

il i€l n=0

= Ek[Tk] < 00,

since k is positive recurrent. So if we define for every i

then 7 is an invariant distribution.

Suppose next that (iii) holds and let k£ be a state. We want to show that k is positive recurrent.
First we show that 7 > 0. Let ¢ € I be such that m; > 0 and by irreducibility there exists n > 0
such that p;x(n) > 0. By stationarity of = we get

T = Zﬁjpjk(n) > mpz-k(n) > 0.
JeI

So we can define a new invariant measure \; = m; /7 for every i € I. Also Ay = 1, and hence by
Theorem [8.9] we get that )\kz v}, which implies

1
Eg Ty = 1) < Ai=—<
k[ Tk ZVk(Z) = Z (= o0,
el i€l
since m;, > 0. This proves that k is positive recurrent.

For the last part, let k& € I. Then k is positive recurrent by (i), and therefore also recurrent. So
the measure A that we defined above must be equal to v by Theorem We thus obtain that

3y ;i; = 3" w(i) = By[T],

i€l i€l

which using that 7 is a distribution gives

and completes the proof. O
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Corollary 8.12. Suppose that P is an irreducible matriz and it has an invariant distribution .
Then for all x,y we have

oy ™)
(y) m(z)’

Example 8.13. Let X be a simple symmetric random walk on Z, i.e.
1
P(z,z+1)=Px,z—1) = B for all z € Z.

It is immediate to check that 7; = 1 for all 7+ € Z is an invariant measure, since

1 1
T = 5T+l + 5 i1

2 2

By Theorem since P is a recurrent walk, we get that all invariant measures are multiples of
7. We thus deduce that X is not positive recurrent, since ) .., m; = oo, and hence we cannot
normalise to obtain a probability distribution.

Remark 8.14. We note that the existence of an invariant measure does not imply recurrence.
Indeed, let X be a simple symmetric random walk on Z3. Then 7; = 1 for all i € Z3 is an invariant
measure, but X is transient as we have already showed.

Example 8.15. Let X be an asymmetric random walk on Z with transition probabilities
P(z,x —1)=q and P(z,x+1)=p

with p > ¢ and p + ¢ = 1. Writing down the equations that an invariant measure 7 should satisfy
we get,
T = Ti—1P + Ti414,

7ri—a+b<p> .
q

So here uniqueness up to multiplicative constants does not hold.

which we can solve to get

Example 8.16. Let X be a random walk on Z with transition probabilities
Pz,x—1)=q¢>p=Px,z+1) forz>1

and p+ ¢ = 1. Suppose also that P(0,1) = p and P(0,0) = q. We look for an invariant distribution
by solving m = 7 P. We have

Ty = q71 + qmo

T, = pTg—1 + qmpy1 for all k& > 1.

Solving the above system we get
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So we can normalise 7 in order to get a probability distribution by taking 79 = 1 — p/q. We then

() (-5

Since we found an invariant distribution, it follows that X is positive recurrent.

get

9 Time reversibility

We start with a lemma which says that if a Markov chain is started from stationarity and we reverse
time, then we obtain another Markov chain with the same invariant distribution.

Proposition 9.1. Let X be a Markov chain with transition matriz P which is irreducible and has
invariant distribution m. Fiz N € N and suppose that Xo ~ w. Then the process (Yy,)o<n<n defined
via Y, = XN_pn 18 a Markov chain with transition matrix P given by

Ble,y) = "W P(y,a)  for allzy.

m(x)

Moreover, P is irreducible and has invariant distribution .

Proof. First we check that P is indeed a transition matrix. We have

Zﬁ(m,y) :ZMP(Z/,J?) = M = 17

. 7(x) m(x)

where for the second equality we used that 7 is invariant, i.e. that m = 7 P.

We next show that Y is a Markov chain. Let yg,...,yny € I. Then

P(Yb:yo,...,Yn:yN) :P(X():yN,...,XNZy())
= m(yn)P(yn,yn—-1) - P(y1, o)

~ ~

= 7(y0) P(Y0,y1) - - P(Yn—1,Yn),

which shows that Y is Markov(r, P).
We check now that 7 is invariant for P. Indeed, we have
5 _ m(y) _ _
Y w(@)P(z,y) =Y w(x) —5Ply,x) =Y w(y)Ply, ) = 7(y),

since P is a stochastic matrix.

Finally, to prove that Pis irreducible, let =,y be two states. Then there exists a sequence of states
To = x,T1,...,xp =y such that P(xg,z1)- - P(xk_1,x) > 0. But

o~ o~

P(ﬂ?k, xk—l) cee P(l’l, 1’0) = 7'('(370)P(1I(), xl) s P(J}k_l, :L’k)/ﬂ'(:z’k)

Pz, p—1) - ]3(331, x0) > 0, which shows that P is also irreducible. O
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In the previous proposition we saw that if Xy ~ 7 and we reverse time, then we obtain a Markov
chain again with a different transition matrix but the same invariant distribution. So in general,
the matrices P and P are not equal. In the particular case that they are equal, then we say that
X is time reversible.

Definition 9.2. We say that X with transition matrix P and invariant distribution 7 is time
reversible, if P = P. By the definition of P, we see that X is time reversible, if for all z,y we
have

m(x)P(x,y) = 7(y) Py, z).
These equations are called the detailed balance equations.
Equivalently, X is called time-reversible if for any fixed N € N whenever X ~ 7 then

d
(Xo,.. ., Xn) L (X, ..., Xo).

Remark 9.3. It is important to emphasise that in the definition of reversibility we start the chain
from 7. Indeed, since we want the two vectors (Xo,..., Xy) and (Xp,...,Xo) to have the same
distribution, this would not be possible if say Xg ~ 4.

Remark 9.4. An intuitive way of thinking of time reversibility is by imagining watching a video
of the Markov chain started from stationarity. Then reversibility means that whether we watch the
video forwards or backwards in time, what we see is indistinguishable statistically, i.e. we cannot
tell the two movies apart.

Lemma 9.5. Suppose that u is a distribution satisfying

w@)P(z,y) = w(y) Py, x)  for all z,y.

Then b is an invariant distribution for P.

Proof. Taking the sum over all x of both sides of the equality of the statement we get
D (@) Pla,y) =Y uy)Ply,z) = puly),
x xr
where we used that P is a stochastic matrix. Therefore, ; = pP, which means that u is an invariant

distribution. O

Remark 9.6. From the lemma above we see that if we find a solution to the detailed balance
equations, i.e. we find a distribution p satisfying

wz)P(z,y) = p(y)P(y,x) for all z,y,

then p is necessarily invariant for P, and in particular this implies that P is time reversible. So
when looking for an invariant distribution, we should first check whether there is a solution to the
detailed balance equations, since this is much easier than trying to solve m = wP. Of course, if there
is no solution to detailed balance, it does not mean that P does not have an invariant distribution.
All it means is that even if P has an invariant distribution, then it is not time-reversible.
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Example 9.7. Consider a biased random walk X on the cycle Z,, with transition probabilities

P(i,(i4+1) mod n) = % =1—P(i,(i—1)modn), forallie{0,...,n—1}.
Then m; = 1/n for all i is clearly an invariant distribution, but P is not reversible, because the
detailed balance equations are not satisfied. Thinking of the intuitive explanation of reversibility,
we see that if we start X from m, then all states are equally likely, and if we run the chain forwards
in time we will observe a rightwards drift, while if we run it backwards in time, we will observe a
leftwards drift. This means that the two are not indistinguishable.

Example 9.8. Consider a biased random walk X on {0,1,...,n — 1} with transition probabilities

P(i,i+1) :%: 1—P(i,i—1) forie{l,...,n—2}
and P(0,1) =2/3 =1— P(0,0) and P(n,n—1) =1/3 =1 — P(n,n). Then solving the detailed
balance equations one gets that \; = 2' is an invariant measure which can be normalised, and hence
that X is reversible. The difference with the previous example, is that the invariant distribution
here is concentrated on the right side, and hence starting the chain according to m we will observe
the chain bouncing off the endpoint n — 1, and this will not be indistinguishable between forwards

or backwards in time.

Example 9.9 (Random walk on a graph). Let G = (V, E) be a finite connected graph with V'
being the set of vertices and E the set of edges. A simple random walk on G is a Markov chain

with transition matrix
1 .
= if (z,y) e E
P(z,y) = ¢ @ () e b
0 otherwise
where d(z) is the degree of z, i.e. the total number of edges having = as an endpoint. Since G is
connected, it follows that P is irreducible. We now look for an invariant distribution by solving the

detailed balance equations:
m(2)P(a,y) = n(y) Ply,x) for all z,y.

For (z,y) € E we get

So we see that taking v(x) = d(x) for every z gives an invariant measure. Normalising it (since the

graph is finite), we get an invariant distribution 7 given by

d(x) d(x)

= forallz e V.
dyevdy)  2|E|

m(x) =

10 Convergence to equilibrium

Recall the theorem below from Section ]
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Theorem 10.1. Let I be a finite state space and suppose that there exists i € I such that for all j
pij(n) = m  asn — oo.
Then m = (m; : j € I) is an invariant distribution.

The question we are interested in is the conditions under which the n-th power of a transition
matrix converges to the invariant distribution. Let us start with an example.

Consider a simple random walk on Z,, with transition probabilities
1
P(i,(i4+1) mod n) = 5= P(i,(i—1) mod n) for all i € Z,.

The invariant distribution is m(i) = 1/n for all i. We see that starting from 0, the random walk
is back at 0 only at even times. So if we look at the limit P¥(0,0) as k — oo, then it would not
converge. This leads us to the definition of the period of a state.

Definition 10.2. Let P be a transition matrix and i a state. We define the period of 7 to be
d; =g.c.d{n>1:P"(i,i) > 0}.

We say that ¢ is aperiodic if d; = 1.

Lemma 10.3. Let P be a transition matriz and i a state. Then d; = 1 if and only if P™(i,i) > 0
for all n large enough.

Proof. It is clear that if P"(i,i) > 0 for all n sufficiently large, then d; = 1.

Suppose next that d; = 1 and set D(i) = {n > 1: P"(i,i) > 0}. We first show that D(i) contains
two consecutive integers. First of all, if m,n € D(i), then also m+n € D(i). Suppose now that the
minimum distance between any two elements of D(i) is r > 2 and let n,m € D(i) with n = m +r.
Let also k € D(i) with k = ¢r + s with £ € N and 0 < s < r, which exists since otherwise only
multiples of 7 would be contained in D(i) and this would contradict that g.c.d.(D(7)) = 1. Letting
a=({+1)nand b= (¢ + 1)m + k we see that both a and b are contained in D(i) and

a—b=r—se(0,r)

and this contradicts the definition of r as the minimum distance between any two elements of D(7).
Therefore, D(i) contains two consecutive numbers ni,n; + 1. Since any + b(ny + 1) € D(i) for
all a,b it easily follows that D(i) contains all n sufficiently large (n > n?) and this completes the
proof. ]

Lemma 10.4. Let P be an irreducible transition matriz and let i be an aperiodic state. Then all
states are aperiodic.

Proof. Let j be another state. Since i and j communicate there exist m,n > 0 such that P"(j,i) >
0 and P™(i,7) > 0. Then for all s > 0 sufficiently large we have

P, 5) 2 PP (5, 0P (i, 1) P™ (i, ) > 0,
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which shows that P’ (7,7) is positive for all ¢ sufficiently large, and hence j is also aperiodic. O

Theorem 10.5 (Convergence to equilibrium). Suppose that P is irreducible and aperiodic and has
an invariant distribution w. Let X ~ Markov(\, P), where X is a distribution. Then for all y we

have
lim P(X,, =y) =n(y).

n—o0

In particular, for all x,y taking A = d, we have

lim P"(z,y) = m(y).

n—oo

Proof. Let (Y;,)n>0 ~ Markov(w, P) be independent of X. We now consider the process ((Xp, ¥))n>0
which is clearly a Markov chain on I x I with initial distribution A X 7 and transition matrix P
given by

P((z1,22), (y1,92)) = P(x1,y1) P(22, y2).

We first claim that P is irreducible. Let (z,y) and (#/,4') be two states in I x I. By irreducibility
of P we have that there exist m and ¢ such that P™(z,2’) > 0 and P‘(y,y) > 0. By aperiodicity
of P for all n large enough we have that

P*(z,2') > P™(z,2)P""™(«',2’) >0 and  P"(y,y') > P(y,y)P"*(v/,v) > 0.

Therefore, this proves that for all n large enough P"((z,y), (z/,y/)) > 0, which means that P is
irreducible.

Let a € I and we define
T =inf{n > 1:(X,,Ys) = (a,a)}.

Then T is a stopping time for the Markov chain (X,Y). We now show that P(T' < oco) = 1. It is
immediate to check that 7 given by

m(x,y) =m(x)n(y) for all z,y

is an invariant distribution for P. Theorem now implies that Pis positive recurrent, which
means in particular that the state (a,a) is recurrent, and hence using also Theorem [7.9| we get
P(T < ) =1.

We next define a new process (Z,)n>0 as follows

X, ifn<T
Dy = )
Y, ifn>T

We claim that Z is Markov(\, P). Since T' > 1 by definition, for all x € I we have

We now show that Z is a Markov chain with transition matrix P. Let A ={Z,_1 = z,—1,...,Zp =
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20}. We have

PZpt1=y|Zn=2,A)=P(Zps1=y,T>n|Zp=2,4)+P(Zpt1 =y, T <n|Z,=1x,A)
=P Xpt1=y|T>nZ,=2,A)P(T" >n| Z,=x,A)
+PYor1 =y | T <n,Z, =2, A)P(T <n|Z,=z,A).

The event {T" > n} is the complement of {T" < n} which since T is a stopping time only depends
on (Xo,Yy),...,(Xn,Y,). Therefore, we obtain

P(Xn+1:y|T>n,Zn:x,A)
:ZP(Xn—H:y’T>n,Zn:$aAaYn:Z)P(Yn:Z‘T>n7Zn:xaA):P<x7y)'

z

Similarly,
PYot1=y|T<nZ,=2,A)=PY,1=y|T <n,Y,=zA) = P(z,y).
Therefore, we obtain
P(Zni1 =y | Zn =2, A) = P(z,y),

which shows that Z ~ Markov(\, P).

We can now finish the proof. Let y € I. Since X and Z have the same distribution and Y is a
stationary chain we have

=PX,=y,T>n)+PY,=y,T<n)—PY,=y,T >n)—-PY, =y, T <n)|
=P(X,=y,T>n)—PY,=y,T>n) <P(T>n)
Since P(T' < 00) = 1, we have that P(T' > n) — 0 as n — oo and this completes the proof. O]

Theorem 10.6. Suppose that P is irreducible, null-recurrent and aperiodic transition matriz. Then
for all x,y we have
P*(z,y) -0 asn — oo.

Proof. This proof follows [I, Theorem 21.29].
Consider the transition matrix P((x,y), (z/,y')) = P(x,2')P(y,y') as in the proof of Theoremm

As in the proof of Theorem we get that P is irreducible, since P is assumed to be irreducible
and aperiodic. If P is transient, then the statement of the theorem follows, since in this case for
every (z,y) € I x I we get

> P (@), (1) = > _(P"(2,))* < o0,

n

which implies that P"(x,y) — 0 as n — oc.
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So we suppose now that P is recurrent. Fix y € I and consider the measure v, defined by

Ty—1
i=0

Then since P is irreducible and recurrent, it follows from Theorem that v, is invariant for P.
Since P is null-recurrent, it means that v, (1) = E,[T}] = co. Fix M > 0. Then there exists a finite
set A such that vy(A) > M, which follows from the fact that v,(/) = co. Consider now a new
measure p defined as follows

_ Vy(x) -
p(x) = I/y(A)l( €A).

Then p is a probability measure and by the invariance of v, (v, = v, P" for all n) we have

,LLP”(Z) _ Z[L(IE)Pn(l"Z) < Z Zj((j))Pn(l',Z) = I/y(lA) VyP”(Z) = Vy(A).

We now let (X,Y) be a Markov chain started according to p x J, and with transition matrix P.
As in the proof of Theorem [10.5] we let

T=inf{n>1:(X,,Y,) = (x,2)}.
Then T is a finite stopping time with probability 1 (since Pis recurrent) and defining

X, ifn<T
Ty = .
Y, in>T

we see as in Theorem that Z is a Markov chain started according to p and with transition
matrix P. Therefore, we obtain
vy(y) 1 1

(10.1)

We can now finish the proof, since
P.(Y,=9y)=P,(Yn=yn>T)+P.(YVo=yn<T)<P(Z,=y)+P(T >n).

Using the bound ((10.1]) and taking the limit as n — oo we get

1
limsup P, (Y, =y) < —,
n—>oop ofn=y) < M

since T' < oo with probability 1. Since this holds for any M > 0, the statement of the theorem
follows. N
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11 Ergodic theorem

Theorem 11.1. Let P be an irreducible and positive recurrent matriz with invariant distribution m.
Suppose that X starts according to a distribution A. Then for all x we have almost surely

Proof. We write V,,(z) = 2?2—01 1(X; = x) for the total number of visits to z up to time n — 1.

Since P is recurrent, it follows that 7, < co with probability 1 and by the strong Markov property
the process (X7, 4n)n>0 is Markov(d,, P) independent of Xy, ..., X7. Since T, < oo, we get that
the limit lim V},(x)/n is the same when the initial distribution is A and J,. So it suffices to consider
the case when \ = 6.

We recall the definition of the successive times at which X visits z: first we set T, éo) = 0 and for
k > 1 inductively we set
THD —inf{n > T® +1: X,, = 2}

We also define the successive excursion lengths from x by setting

) _ 0 R B T
v 0 otherwise '

By the definition of the return times we have
Tm(vn(l')_l) S n—1

and equivalently
SW 4 4 gM@=1) <y 1)

Similarly,
TVa@) >

and equivalently
S 4 4 8@ >

(k))

By the strong Markov property, the excursion lengths (S )k>1 are i.i.d. with expectation given

by my = E.[T;] = 1/7(x). The strong law of large numbers then asserts that almost surely
s 4 s

’ —mg; as k — oo.

We now have

Sy 4 sm@1) << g 44 5(Val@),
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Dividing through by V,,(x) we obtain

S 4. 4SO sV s
V() = Valx) ~ V() ’

and hence taking the limit as n — oo we deduce

lim
n—oo N My

and this concludes the proof.
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